DIRECTED AND NON-DIRECTED
PATH CONSTRAINED LAST-PASSAGE PERCOLATION
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ABSTRACT. Hammersley’s Last Passage Percolation (LPP), also known as Ulam’s prob-
lem, is a well-studied model that can be described as follows: consider m points chosen
uniformly and independently in [0,1]%, then what is the maximal number L, of points
that can be collected by an up-right path? We introduce here a generalization of this
standard LPP, in order to allow for more general constraints than the up-right condition
(a 1-Lipschitz condition after rotation by 45°). We focus more specifically on two cases:
(i) when the constraint comes from the y-Holder norm of the path (a local condition),
we call it H-LPP; (ii) when the constraint comes from the entropy of a path (a global
condition), we call it E-LPP. These generalizations of the standard LPP also allows us to
deal with non-directed LPP. We develop motivations for directed and non-directed path-
constrained LPP, and we find the correct order of £,, in a general manner — as a specific
example, the maximal number of points that can be collected by a non-directed path of
total length smaller than 1 is shown to be of order /m. This new LPP opens the way
for many interesting problems, and we present some of its potential applications, to the
context of directed and non-directed polymers in random environment. Several problems
remain open.
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1. INTRODUCTION

In this introduction, we recall the original Hammersley’s LPP of the maximal number
of points that can be collected by up/right paths, also known as Ulam’s problem [25] of
the maximal increasing subsequence of a random permutation. This problem has been the
object of an intense activity over the past decades, culminating with the proof that it is
exactly solvable, and in the so-called KPZ universality class. We show how to generalize this
process by enlarging the set of paths allowed to collect points, by changing the increasing
constraint (or a 1-Lipschitz constraint, by a 45° rotation), to a more general compatibility
condition. We point out that the compatibility condition in the Hammersley’s LPP is local,
that is, the constraint to collect points depends only on two consecutive points. Conversely,
a global condition is a constraint that takes in account the whole path trajectory that
collects points.

In Section 2, we introduce some specific constraints of interest (local and global) in the
directed setting and we derive the correct order for the LPP problems. In Section 3, we
define a natural framework to be able to consider non-directed LPP and we also derive its
correct order. Let us stress that in this article we put forward the interest of these models,
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focusing on simpler results in order to provide motivations for our study. The techniques we
use are robust, and our results already have many possible applications, as seen in [(] or as
developed in Section 4, where as one example we relate our results to the Hamilton-Jacobi
equation considered in [3] to study stationary solutions for the Burgers equation. For this
reason we do not pursue for optimal constants or for more precise convergence results, since
it would bring many technicalities, and since it would dilute our core message. We conclude
the paper by presenting some simulations, which help us to formulate a few conjectures on
the convergence of the models, see Appendix A.

1.1. Hammersley’s Last Passage Percolation. Let us take m points independently
as uniform random variables in the square [0,1]?, and denote the coordinates of these
points Z; := (t1, 1), Z2 := (t2, x2), etc... We say that a sequence (z;,)1<s<k 1S increasing if
ti, > ti,_, and x;, > x;,_, for any 1 < ¢ < k (we set by convention i = 0 and zy = (0,0)).

Then, the question is to study the length of the longest increasing sequence among the m
points which is equivalent to the length of the longest increasing subsequence of a random
(uniform) permutation of length m. We denote:

Loy = sup{k ;3 (i, ..., 1) st (Ziy)1<e<k 18 increasing}

Using subadditive techniques, Hammersley [13] first proved that m-Y2L,, converges a.s.
and in L' to some constant, that was believed to be 2. Further works then proven that the
constant was indeed 2 [19, 26]. Moreover, and quite remarkably, this model has been shown
to be exactly solvable by Baik, Deift and Johansson [2], and they identified the fluctuations
of L,, around 24/m, showing that the model is in the so-called KPZ universality class. More
precisely, in [2] the authors showed the following result.

Theorem 1.1 ([2]). We have the convergence in distribution

L —2/m  (d)
— 6~ fous,
m

where Foyg is the Tracy-Widom GUE distribution.

Moreover, Johansson [17] proved that the typical transversal fluctuations of a path col-
lecting the maximal number of points is of order m /6.

Remark 1.2. Let us stress that the context of [17] is actually slightly different: Johansson
considers up-right paths going from (0,0) to (N, N) in a Poisson Point process of intensity
1: he shows that the typical transversal fluctuations (away from the diagonal) of a path
collecting the maximal number of points is of order N?/3. One recovers the setting presented
above after rescaling by 1/N to reduce to [0, 1]?, with a Poisson point process of intensity
m = N? instead of a fixed number m of points: it therefore tells that the transversal
fluctuations of a maximal path is of order N~1N?2/3 = yj~1/6,

Let us also mention that in [I1], the case when the points are not chosen uniformly
in [0,1]? but have some given density p(z,y) has also been solved: the limiting constant
lim,, o L£,,/4/m and the limiting curve are identified.

1.2. General definition of path-constrained Last Passage Percolation. We now
perform a 45 degree clockwise rotation, and generalize Hammersley’s LPP by introducing
a general constraint on paths (that can be either local or global): we introduce it via a
notion of compatibility of the points that can be collected. We need three ingredients:

e a domain A;
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e a (finite or countable) random set of points T < A, whose elements are denoted by
Z; = (ti,x;) and its law is denoted P;
e a compatibility condition, i.e. a set C of compatible subsets of A.
Then, we define the C-compatible Last-Passage Percolation as the maximal number of C-
compatible points in T, that is

(1.1) E%fc)zﬁgfc)(A) :=sup{|A|;ACT,A€C}.

Remark 1.3. This fits the definition of Hammersley’s LPP as defined above: the com-
patibility set C being the set of all increasing subsets of [0,1]2. We can also define it, in
an equivalent manner, after a rotation by 45°: we take the domain A := {(a:,y),() <z<
v2,|y| <min(1,1—¢)}, and we use T = YT, a set of m independent uniform random vari-
ables in A. The compatibility set is then taken to be (with the convention (¢g,z¢) = (0,0))

|zi — 1|

¢c-U {A = {(ti, i) h<ick ;0 <t < -+ <t < V2, P——

k=0

<1foralll<i<k}a

which corresponds to sets of points that can be collected via a 1-Lipschitz function. The
Poissonian (point-to-point) version of Hammersley’s also LPP can also be recovered by
considering T a Poisson point process on R? with intensity A > 0, and A = [0,¢] x R, with
the same 1-Lipschitz compatibility condition as above.

Now, there are at least two reasonable ways of defining the compatibility condition: (i)
by replacing the Lipschitz condition by a Holder constraint; (ii) by considering an entropy
constraint (a global constraint on the path, for instance on its Sobolev norm), that also
allows to deal with non-directed paths. We restrict ourselves to the case of the dimension
d = 2 for the simplicity of the exposition, but all our definitions and reasonings can easily
be extended to the case of higher dimensions. We start with the case of directed paths in
Section 2, and then discuss the non-directed case in Section 3. We present some potential
applications in Section 4.

Several other constraints can be (and have been) considered, and let us mention a few.
For instance the constraint that the path is convex has been studied in [1], and is related
to the question of counting the number of lattice convex shapes, see [5, 24, 27] and more
recently in [7]. The question of pattern-avoiding permutation has also gained some interest
recently, see in particular [14, 20, 21]. Thinking about a polymer model, one may also think
of a local “flexibility” condition for the set A = (A;)1<i<x by considering the constraint
0 < AN < inf; |0;| < sup; [6;] < 0P < oo, with 6; the angle between the segments [A;_1, A;]
and [A;, Ai+1] (and 6y := 0). This would model the stiffness of the polymer. In this paper
we do not pursue in this direction.

We also mention that in [23], the author considers a related problem: the question is
to obtain criteria for the existence of “regular functions” f : R — R (with several type of
constraints, such as continuity, bounded variations, etc...) whose graph interpolates between
random subsets of parallel vertical lines. This can be thought as a first passage percolation
analogue to our problem, with a different distribution for the set of points considered.

2. DIRECTED LPP: HOLDER AND ENTROPY CONSTRAINTS

In this section, we consider directed paths. We work with a domain A, = [0, ] x [—z, z],
for some (fixed) t,z > 0. Then, we consider m independent r.v. uniform in A;, to form
the set Y,,. We will use £,, as a short notation for Ly, . Moreover, we say that a set
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A = {(ti,x;) h1<i<k © Ry x Ris directed if 0 < t1 < --- < t,. We deal first with the local
constraint (Holder constraint), before we turn to the global one (Entropy constraint).

2.1. Local Holder constraint. The first natural generalization of the 1-Lipschitz con-
dition is to consider a Holder constraint instead — the constraint is local, it depends only
on two consecutive points. For any v > 0, we can define the y-Holder norm of a set

A = (tj,x;)1<i<k (in which the points are ordered t; < --- < tg, with the convention
(to, o) = (0,0))
(2.1) H,(A) := sup i = 71|

1<i<k |ti —ti1]7
Notice that this is not the y-Holder norm of the linear interpolation of the points, since
(2.1) only considers consecutive points: one can think of this quantity as a local y-Holder
norm. In particular, the case v > 1 is not trivial here, and the case v = 0 is also of interest.
Then, for some fixed A > 0, we define a compatibility set

(2.2) ’H‘;‘ = {A c Ry x R; A directed, H,(A) < A}.

We then consider the y-Holder Last Passage Percolation, abbreviated as H,-LPP, defined
as
A
(2.3) £ (M) = sup{|A|; Ac Tm,AeH;“}.
We prove the following result.

Theorem 2.1. There are constants c1,ca (depending only on ~y, during the course of the
proof one finds that c; < ¢(1 + 7)_1/2) such that for any t,x and B, for any 1 <k <m

(2.4) [P(L?(];‘f)(At,m) > k) < <%>k,
(2.5) P(ﬁgfﬁ)([\m) < k‘) < exp {czk'(l —co (% A 1) TIZ)} :

As a consequence, there is some C > 0 such that for any fized t,x,v, A, P-a.s. there is
some mg such that

| £ ()
~ < m L < > .
C S (AP o) Tl S C  for allm = my
We stress that the constants in (2.4)-(2.5) are uniform in the parameters m, A, ¢, z: the
results are still valid when considering the situation when A, ¢,z — o0 as m — oo, which
is useful for some applications. Note that we could define a point-to-point version of the
H,-LPP, by adding the condition that (¢,0) € A: a result analogous to Theorem 2.1 then
holds.
(") (HZ) . P .
Note that we have that Ly, " = L, "' (A¢ ) is of order m”, with £ = 1/(1++). Then, it
(Hy

is very natural to expect that L, " ) /m" converges a.s. to a constant as m — 00: we discuss
this convergence in Section 2.3, see in particular Remark 2.7. The value of the constant is
discussed in Appendix A.

Let us also discuss briefly about the (conjectured) transversal fluctuations of a maximal
path (that is a path collecting the maximal number of points). We already have that E,(zf 3
is of order m®, with k going to 1 as v | 0. Then, the transversal fluctuations of a maximal
path should be of order m~¢ with ¢ = ((v) decreasing as v decreases, up to some point
where ( reaches the value 0 (at which point a maximal path has transversal fluctuations of
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FIGURE 1. Simulation of H,-LPP with m = 10* (¢,z, A all set to 1). The plots represent a
maximizing path: from left to right, v = 1 (L, = 99 in the picture, m'/? = 100); v = 1/2
(Lo = 510, m?3 ~ 464); v = 1/4 (L, = 1722, m*® ~ 1585). We stress that the scale is different
in all three plots, and we see that the transversal fluctuations are much smaller than 1 in the
first case, and of order 1 in the second and third case.

order 1, see Figure 1 for an illustration). As discussed below (see in particular Section 3.3-

(b)), it is natural to conjecture that ( = (1—5x/3) v 0 = 243 v 0: transversal fluctuations

should be much smaller than 1 when v > 2/3 (k < 3/5) and of order 1 when v < 2/3
(k > 3/5).

Remark 2.2. One could naturally generalize Holder LPP to a cone-shaped LPP: one can
define a region R = {(t,z) € Ry x R, fo(t) < = < fi1(t)}, with fi < f2 two functions
R; — R, and let the compatibility condition for A be that for any (¢;—1,z;—1), (t;, ;) € A
we have (t; — t;—1,x; — x;—1) € R (i.e. the next point in A has to be in the cone-shaped
region R from the previous point). In this framework, H,-LPP is simply the cone-shaped
LPP with R = {(¢, z), —t“/ < z < t7}, and one could easily adapt the proof of Theorem 2.1:
the key quantity is V' (u So ] f1— f2](v)dv, the area of R close to the origin, and one finds

that £,, is of the order of V=1(1/m) (recovering the m'/(1+7) in the Holder case).

2.2. Global Entropy constraint. Another type of constraint that is natural to consider
is a global constraint: we talk about an entropy constraint, since it arises naturally when
considering random walk paths (the entropy being a measure of the non-likelihood of
a path). This is a generalization of the study initiated in [(], which was motivated by
applications to directed polymer in random heavy-tail environment and helped answer
Conjecture 1.7 in [12] —we refer to Section 4 for an overview of how E-LPP can be applied.
For any a = b > 0, a > 0, we define the (a, b)-Entropy of a set A = (¢;, x;)1<i<k (again, the
points are ordered ¢; < --- < t;, and we use the convention (¢, zg) = (0,0))

|5L'2_xz 1|
2.6 Ent,, .

In particular, we will be interested in two special subcases. First, when b > 0 and ¢ = b+ 1:
in that case, we can generalize the notion of entropy to continuous paths s : [0,¢] — R,
by Enty(s) = So |s'(u)|’du, corresponding to the L’ norm of s’ (it is related to the (1,b)-
Sobolev norm of s) and the entropy of a set A corresponds to the entropy of the linear
interpolation of A. Second, when b = 0: then the entropy can also be generalized to non-
necessarily continuous paths s : [0,t] — R, by Enta(s) = sup { Y, |s(t;) — s(ti—1)|"}, the
supremum being over all finite subdivisions ¢; < - < tk of [0,t]. ThlS corresponds to the
“a-variation” norm of s (when a = 1 this is the total variation, and when a = 2 this is the
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quadratic variation). Note also that, considering b > 0 and a = b/~ in (2.6), we have that

k

<Ent (A))V/b _ <Z |lz; — xi1|b/7)v/b sup |zi — 1|
" = lti—tial’ b 1<isk [t — tim1[7

so that when b — o0 we formally recover the y-Holder norm of A (2.1).

Then, for some fixed B > 0, we define a compatibility set
(2.7) Efb = {A c Ry x R; A directed, Ent, 5(A) < B} ,
so that a set of points is compatible if it can be collected by a path with entropy smaller
than B. We then consider the Entropy constrained LPP, abbreviated as E-LPP, as

B
(28) Efvfa’b)(At,z) = sup{|A|, A Tm,Angb}.

We prove the following result. (Again, we could define a point-to-point version of the E-
LPP, by adding the condition that (¢,0) € A: an analogous result would then hold for the
point-to-point E-LPP.)

Theorem 2.3. There are constants c3,cy (depending only on a,b) such that for any t,z
and any B, forany 1 <k <m

o B )< (RO
(2.10) P(ﬁfffw(At,z) < k) < exp {C4k<1 _ C4<W . 1)7;)} |

As a consequence, there is a constant C' such that for any fized t,z,a,b, B, P-a.s. there is
some mg such that

B
1 L% (A,

C = (Btb/ga)l/(atb+1)pa/(atbtl)

<C  forallm=mg.

Again, the constants are uniform in the different parameters (and explicit, see the proof
of Theorem 2.3), and this fact reveals to be very useful, in particular for the applications
developed in Section 4.1.

FIGURE 2. Simulation of E-LPP with m = 10* (t,z, B all set to 1), via a simulated annealing
procedure (using a Glauber dynamic on paths, with transitions between paths differing by at
most 1 point). The plots represents a path which collects a number of points that approximate
Ly, with different parameters a,b: from left to right, a = 2,b = 1 (L, = 117, m'/? = 100),
a=4,b=1 (L, = 547, m*® ~ 464), a = 1,b = 0 (L, = 158, m'/? = 100), a = 2,b = 0
(L = 712, m?® ~ 464). Again, we stress that the scale is different in all four plots — much
smaller than 1 in the first and third, and of order 1 in the second and forth.
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E8) _ €8

Also here, L,
(€2 . .
to expect that L, /m" converges a.s. to a constant as m — oo. This convergence is
discussed in Section 2.3, and the value of the constant in Appendix A. Notice that in the
case where a = b+ 1 (which is one of the most natural, since it arises from LDP of random
walks, see Remark 2.4), we find k = 1/2, exactly as in the case of a Lipschitz constraint.
In the case b = 0, we find k = a/(a + 1) so kK = 1/2 when a = 1 (total variation case) and
Kk = 2/3 when a = 2 (quadratic variation case). As far as the transversal fluctuations of
a maximal path are concerned, we argue in point (b) of Section 3.3 that it should be of

order m~¢, with ¢ = (1—5k/3) v 0 = % v 0: transversal fluctuations should be much

smaller than 1 for k < 3/5, and reach order 1 for x > 3/5. See Figure 2 for an illustration.

(Atz) is of order m" with k = a/(a 4+ b+ 1), and it is natural

Remark 2.4. Let us stress here that the entropy of a set A as defined in (2.6) appears
naturally when considering large deviations for random walks: consider S a symmetric
random walk with unbounded jumps, with stretch exponential tail P(S; = z) “=™ e~ l#I",
for some v > 0 (one may consider that v = oo includes the case of the usual simple random
walk). Then, when considering the probability that a point (n, z,) (with n — o0, 2,, » 1/n)

is visited (or collected) by the simple random walk path, we realize that

nl(x,/n) if v>1, orve (0,1) and z, « n¥/G)

2.11) —logP(S, = z,) "X~
(2.11) o8 P( ) {J(mn) if v € (0,1) and z,, » n'/Z=),

with some LDP rate functions I(-),.J(-). More specifically, we have I(z) ~ 22/2 as x — 0
(moderate deviation regime, see [10] for the standard Cramér case, [22] for the case v €
(0,1)), I(x) = =¥ as x — oo (super-large deviation, one-jump deviation, see [23, Thm. 2.1]),
and J(z) = z¥ (one-jump deviation, see [23, Thm. 2.1]). As such, the entropy defined in
(2.6) is the natural scaling limit of the log-probability that a random walk path visits a
given set of points. We chose the specific form (2.6) instead of using general LDP rate
functions I(-), J(-) because: (i) we are able to perform computations with this formula, (ii)
we can usually bound the rate function c|z|* < I(z) < ¢|z|* for some a > 0. In (2.11), we
therefore have: in the first part a = 2,b = 1 if z,/n > 0ora=v,b =v -1 (v > 1) if
xn/n — o0; in the second part, a = v,b = 0. However we keep the parameters a,b in the
definition (2.6), to be able to deal with all these cases at once.

Remark 2.5. Let us stress here that we have a comparison between the Holder and
Entropy LPP: indeed, we observe that for A < [0,¢] x R, we have ’H‘;‘ c Sfb with v =
(1 4+b)/a and B = A%. This is due to the fact that for any A = {(t;, x:i)}1<i<k With
H,(A) < A, we get that, using vy=(1+0b)/a

|zi — x| b
Entab Z ’tz_tz 1’b \Z:Aam—t2 1|a7 < A%.

Aa H
This gives that E( @b )(A) > L,(n (Hb)/“)(A). On the other hand, it is not possible to get the
other bound simply by comparison between local and global constraints.

2.3. Poissonian (point-to-point) version of path-constrained LPP. Similarly to the
standard LPP, we can define a Poissonian (point-to-point) version of the path constrained
LPP, reproducing the idea of Hammersley [13] to prove the convergence of L,,/\/m.

For any A > 0, let T be a Poisson point process of intensity A on R?, and we define
the point-to-point version of path constrained LPPs. Let us consider z = (z,y) € R2. For
a given set A < R x (0,%), we set A®) = A U {2} so that it extends A to make it end at .
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In the directed case, for any t > 0 we consider the domain A; = [0,¢] x R, and we
consider the end-point (¢,tu), for u € R. For any A > 0, B > 0, we define

A A
Egi”)(t,tu) = E&HW)(@W) 1= sup {|A|; A c Ty n Ay, A directed, HV(A(t’t“)) < A} ,
(€2 (EE))

L7 (8, 2t) = L, "7 (¢, tu) = sup {|A|; A c YTy n Ay A directed, Entavb(A(t’m)) < Bt} .

Let us note that the entropy constraint grows linearly in t. We realize that in both cases,
(E&C) (n, un))n>1 forms a super-additive ergodic sequence, in the sense that

(2.12) £+ 0.+ 0w) = £5) (n,nu) + LEY (¢, 0u),

where 0]} is the translation operator: (¢,z) € 6;/Y if and only if (¢t + n,z + un) € Ty. The
super-additivity comes from the fact that the concatenation of two sets have: (i) a H, norm
equal to the maximum of the H, norms of the two sets; (ii) an entropy equal to the sum

of the entropies of the two sets. Therefore, Kingman’s sub-additive ergodic theorem [15]

implies the existence of the limit . lin% N %E%) (t,tu). In the following result we extend this
—00,te

limit to the continuous parameter ¢t € R, and we show that it is finite.
Proposition 2.6. For any u € R and any A > 0, the limits

N RN .7 .1 ED)
H E o
(2.13) Chalu) = lim O (t, tu), Cxp(u) = lim L5 (L, tu)

exist a.s. and in L', and are finite, constant P-a.s.
Moreover the constants CEA(U) and CE’B(u) satisfy the following scaling relations
(2.14)

1— a a—
() = (AA) T ¢ (uATH AT T5) 5 8 p(u) = (ABY)asier 0B (uheriit B arie ).

Proof. We start by proving (2.13). We have already noted that the super-additivity (2.12)
gives directly the result for the limit along the integers n — c0. We can extend the limit
along the real line t — o0, using that ¢ — Eg\c) (t,tu) is non-decreasing.

It remains to prove that the constants are finite. We show how this is a consequence of our

Theorems 2.1-2.3. Let us deal only with the Holder case, and let us set A = 1,A = 1 for sim-

plicity. Thanks to (2.16), we get that £; (¢, tu) @ L1+~ (1,t177u), therefore to prove that the
constant in (2.13) is finite it suffices to show that limsup,,_,, p~ VN L1, pU=1/047)y) <

+00 a.s. For this purpose, removing the constraint we get that Ep(l,p(l_V)/(HV)u) <
A A
E%V)(Alm), where Egﬁ”’)(Alm) is the H,-LPP in the domain A o, = [0,1] x R with a set
T, which is a Poisson point process of intensity p, see Section 2.1. We cannot directly apply
Theorem 2.1 because Aj o is not bounded and T, does not have a fixed number of points.
A A
However, we can write E%W)(AL@) = lim;_, ﬁgﬁw)(ALj) with Ay ; = [0,1] x [—7, ], so
that for any v > 0
(H{) V(147)) — HD (A, 1/(14+7)
IP’(ETp (A1) = vp ) = lim IP’(ETp (A1) =vp )

J—0
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Then, we denote N](p) = [T, n Ay ;| the number of Poisson points in A ; (A1,; has volume
27). Then, using Theorem 2.1 (with m = 4pj), we can write
Ha .
(2.15) IP’(E%/)”)(ALJ') > vpl/(H'Y)) < IP)(NJ(’J) > 4pj) + P(Lapj(A1) = vpl/(H”))
vpt/ A+

. 4cq

The first probability goes to 0 as j — o (N j(p ) is a Poisson random variable of parameter
2pj), so that choosing vy = (801)1/(”’7), we obtain that

A
IP>(ﬁgz?)(/\l,oo) = vopl/(lﬂ)) < 9—vop/ 1Y) 7

which concludes the argument.

To show the scaling relation (2.14), we consider two different scaling relations satisfied

A EB
by LE\H"’) and [,g\ “”’). For this purpose, we start by considering the following maps:

() (t,z) — (AY/AN¢ \/04%) ) which does not change the y-Hélder norm of a set A;
(ii) (t,z) — (AV/(a+btDg A(O+1)/(@+b+1) 1) which multiplies the entropy of a set A (and t)
by )\a/(a+b+1).
Therefore, since the image of T through these maps has the distribution of Y1, we obtain
the following identities in distribution

59 (1, tu) D 7 (W0 30004 )

(2.16)
and  £E (1, 1u) @ £E) (yaltwrieny \0eD/arbrnyy)

As a consequence, by using (2.13), we also get the existence of the following limits, for any
fixedt>0andueR, A,B>0

. 1 (H _

T Sy (6 ) =l )
B

Jim ﬁﬁg\ga,b)(t’tuA(a—(b+1))/(a+b+1)) 1P (u).

o0 \o/(a ,

(2.17)

Note that we recover the same order for £, as in Theorems 2.1-2.3. Note also that the
end-point has to be scaled with A\, except when v =1ora =0+ 1.

From (2.17) we directly obtain that
CI;’A(u) - )\1/(1+7)ch(u)\—(l—v)/(lﬂ))7

2.18
o and O p(u) = AYOHHICE (uA 1m0 o)

Applying another scaling, we can also reduce to the case where A = 1, B = 1. We
consider the following maps, that preserves the distribution of Ty:

() (t,z) — (AYO+¢ A=1/049)2) | which divides the y-Hélder norm by A;

(ii) (t,z) — (BY(atbt)y g=1/(a+b+1) 3) \which multiplies the entropy by B~!x B1/(at+b+1),
Then, we obtain that

c(;{;‘)(t’ tu) @ E(;w (AY A4y, A=A )

and Eg\gfb)(t,tu) (:) £>\ ,b) (Bl/(a+b+1)t7B*l/(a+b+l)tu) .
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As a consequence, we have that
CEA(U) - Al/(lﬂ)cﬁl(u/AQ/(”V)),
and  CYg(u) = BY(@HTDCE, (u/ B @ttty
so that (2.18) and (2.19) give (2.14). O

(2.19)

Remark 2.7. When considering ¢t = 1,4 = 0 with A = m, this corresponds to considering
the LPP problem for paths s : [0,1] — R in a Poisson point process of intensity m. In
principle, one could therefore use (2.17) (with A = m), together with a de-Poissonization
argument (cf. [13]), in order to prove the convergence for the point-to-point version of the
H,-LPP and E-LPP of Sections 2.1-2.2 to the constant on the r.h.s. of (2.17). We do not
pursue in this direction, since it would not bring any technical novelty or much insight on
the problem. We refer to Section 3.3-(a) for further discussion on the value of the constant.
Let us stress that the argument should fail (and the constants differ) when the transversal
fluctuations of the optimal path are of order 1 as discussed below Theorem 2.1: indeed,
restricting the paths to stay in a box [0, 1] x [—1, 1] is then an important constraint.

2.4. Discrete version of the directed path constrained LPP. For the previous LPP
models, we were considering the case of a continuous domain A c R?, and a set of points T
that have a continuous distribution. Our idea is that these models can be thought as limits
of discrete models, where A is a lattice domain, and T is a set of point on this domain.
This is what is done in [0] in the directed random polymer context, where the E-LPP is
considered both in the discrete and in the continuous setting and where it is the main tool
to prove the convergence of the discrete model to a continuum limit —this was conjectured
in [12].

Here below we briefly develop the discrete LPP setting. We let n, h € N, and we consider
the (discrete) domain A, , = [1,n] x [—h, h]. For 1 < m < Card(A,, ), we consider T, a
set of m distinct points in A, 5, chosen uniformly at random. Note that for A < A,, 5, the
definition of H,-Holder norm (2.1) and entropy (2.6) of the set A still holds. We denote

A £B
L,(:f”)(An,h) and L,(n“’b)(An’h) the discrete analogues of the H-LPP and E-LPP: we then

have results analogous to Theorems 2.1-2.3.

Theorem 2.8. For any n,h > 1, and any 1 < k < m < 2nh, we have that
(H4') CAnYm\k (HA) ki (1—e(An A1) m
(L (M) = k) < (S750) 0 B(Ln () <) < eck(i-e(dr ) 3)

Bl/a,b/a R 1) %)

(€ (M) < k) < (Bt

P(Lm (App) = k) < (CBl/anb/am>k, ( €

hi(ab+1)/a P Lm™

A
We recover with this result that in the discrete setting: (i) Lgf W)(An’h) is of order

£B
(An? /)Y AN /A4 (5) L;L“’b)(l\n’h) is of order (Bnb/h®)Y/(a+b+1)ma/(a+b+1) The proof
of Theorem 2.8 is identical to those of its continuous counterparts Theorems 2.1-2.3 (see

for instance the proof of [, Theorem 3.1-(ii)]), and we leave it to the reader.

3. NON-DIRECTED LPP

Let us now develop the fact that the notion of compatibility allows for even more general
constraints, and for example enables us to deal with non-directed paths. To do so, we
consider a natural framework: we work with a time horizon [0, t], and define the y-Hélder
norm and the Entropy of a subset A = (z;)1<;<x of R? (the points are considered in a given
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order), by considering the optimal y-Ho6lder norm or Entropy of a path going through the
points of A (in the correct order) in a time horizon ¢:

(3.1) H,(t,A):= inf{ sup M, t; <--- <t subdivision of [O,t]} ,
1<isk [ti —ti—a|?
& i — wia |0

(3.2) Ent,;(t,A) := inf Z m; ty < --- <t subdivision of [0,¢] ¢,
o =t

where | - || denotes the Euclidean norm on R2. Another way of presenting it is by saying

that Hy(t,A) (resp. Ent,;(t,A)) is smaller than A if and only if there exists a path
s : [0,t] — R? collecting the points of A which has v-Holder norm (resp. Entropy) smaller
than A.

Here again, the case b > 0 with a = b + 1 will be of particular interest for us, since
it arises naturally from a LDP for non-directed random walks to visit a certain set of
points (i.e. considering the probability that there are some times ¢; < --- < ¢ such that
Sy, = x;). It can be extended to continuous curves s : [0,¢] — R2, or more precisely, to
their traces o = {s(u),u € [0,t]}, by taking the infimum of Sé |5’ (w)]|*du over all possible
parametrization 3 : [0,¢] — R? of p. The case b = 0 arises also when considering random
walks with increments with a stretch-exponential tail, and correspond to the a-variation
norm of a curve s : [0,¢] — R (which does not depend on the parametrization of the curve).

Let us notice right away that we are able to identify the optimal subdivision 0 < t; <
-+ <ty <t used by a path to collect all points of A:

e For the Holder case (3.1), we find that the optimal choice for the subdivision is
ti —ti—1 = t||z; — wi,1||1/7(2f:1 s — :L‘i,lﬂl/'y)_l (so that all terms in the sup are
equal). Then we obtain that the v-Holder norm of A is

k
(3.3) B (1, 8) = o (Y o~ il 7)
=1

We note that when v = 1, the definition (2.1) corresponds to the total length of the
linear interpolation of the points of A, and can therefore be extended to continuous
curves s : [0,t] — R2, by Sé | (u)||du, the total length of the curve. It does not
depend on the parametrization but only on the trace o = {s(u),u € [0, t]}.

e For the Entropy case (3.2), we find that the optimal choice for the subdivision is
ti—ti—1 = t|x; —xi_lHa/(b“)(Zf:l 2 —acz-_1||“/(b+1))71 — note that when a = b+1,
t; — t;—1 is just proportional to the distance between the points. Then we obtain
that the Entropy of A is

lL/y a/(b+1)\ 0T
(3.4) Ent,(t, A) = E(E s — i1 ) .
i=1
Note that when a = b + 1, (3.4) corresponds to the (b + 1)-th power of the length
of the linear interpolation of the points of A.

Remark 3.1. In view of (3.3)-(3.4) (and the comments below), we see that the H,-LPP
and the E-LPP are equivalent. We indeed have Ent,, (¢, A) = tH, (¢, A)* with v = (b+1)/a,
or also H,(t,A) = t77Ent, (¢, A)” with b = 0 and a = 1/v. Hence, we will focus simply
on the non-directed E-LPP, since the Entropy and Holder constraints are easily related to
each other.
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We will work with the domain A, = {z € R?, ||z| < r}, the disk of radius 7 (for symmetry
reasons, but this choice is not crucial). For m > 1, T, is a set of m independent variables
uniform in A,.. Then, for some fixed B > 0, we define the non-directed Entropy compatible
sets with time horizon [0, ¢],

&Y = {A cR?; Ent,y(t, A) < B},
and finally the non-directed LPP,

(G

(3.5) Lt (A,) = sup {|A\ CAC T Ac gfb(t)}.

(We use a curly font for . and & to visually mark the difference with the directed LPPs.)
We prove the following result, for non-directed LPP.

Theorem 3.2. There exist constants cs, cg such that for any t,r and B, forany1 <k <m

! c5(Btb /r®)2/em k
(36) P("%’” (Ar) = k) < ( E2(b+1)/a ) ’
(&8 m@/2(b+1) 1/(b+1)
(3.7) P(fm “* (A < k:) <e M 4+ exp {cdc(l - CGT(Btb/Ta) )} .
Finally, there is some C > 0 such that P-a.s. there is some mgy such that
(7))
(3.8) 1 < Zn " (M) <C for allm = my.

C  ma (Btb/ra)b%lm%%“)

Also here, the constants in (3.6)-(3.7) are uniform in the parameters m, B, t,r, allowing
for a dependence of these parameters on m.

In view of Remark 3.1 above, we obtain an analogous statement for non-directed H,-LPP
(take b = 0, a = 1/, and B = tAY" in Theorem 3.2). For instance, the last statement of
Theorem 3.2 can be read (with obvious notations) as
1 20

(89 Boas3me>0: 5 < o e

< C forallm=mg.

-030 -025 -020 -0.15 010 005  0.00 00 o1 02 03

FIGURE 3. Simulation of non-directed LPP with m = 10% in [0.5,0.5]* (¢, B set to 1), via
a simulated annealing procedure (using a Glauber dynamic on paths, with transitions between
paths differing by at most one point). The plots represents a path which collects a number of
points that approximates £,, with different values for v = (b+ 1)/a: on the left, v = 1 (L., = 53
in the picture, m*? ~ 32); v = 3/4 (L, = 128, m*® = 100). Note that the scale is different in
the two plots — quite smaller than 1 in the first case, of order 1 in the second case.

We have that .7}, is of order m" with k = ﬁ Al (or k = % A 1), and it is also

natural to expect that %, /m" converges a.s. to a constant as m — oo. We highlight the
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fact that, in the non-directed case, we find that x = 1/2 (as for the standard LPP), both
for an entropy constraint with a = b+ 1 (the standard case when considering entropy
arising from LDP of random walks) and for a Lipschitz constraint (7 = 1, corresponding
to a length constraint, see discussion after (3.3)).

3.1. Poissonian version of the model. In the non-directed framework, we are also able
to define a Poissonian version of the model. For any z € R? and any r > 0, we will consider
sets A and extend them to end at rz (we denote A("2) this extension), in order to define
a point-to-point version (and use sub-additivity techniques). The main difference with the
directed case is that we need here to decide what is the time horizon ¢, to reach that point.
As further discussed below, the only reasonable choice is to pick ¢, = r!/7, resp. r/(®+1),
which is the time needed to reach rz with H, norm of order 1, resp. with entropy of order
t,. We will also see that the models present some interest only when v = 1 (the H, norm is
then just the length of the path) or when a = b+ 1 (and the entropy derives from standard

LDP).
For any A > 0, B > 0, we define
A P A
fﬁf” )(rz) = f;yﬂ )(rz) := sup {]A\; Ac TA,HW(tT,A(’”Z)) < A} ,
(&5 CH)

SN (rz) =%, “" (rz) := sup {’A‘J A < Ty, Entgp(tr, A(TZ)) < Btr} .

Let us realize right away that the two models are equivalent (on the contrary to Section 3
where the dependence on t was different for the two models, cf. Remark 2.5): (i) from (3.3),
having H, (¢, A) < A is equivalent to Zle |lz; — xi_1 |7 < AV, (ii) from (3.4), having
Ent, ;(t,, A) < Bt, is equivalent to 3% [|z;—z;_1 |+ < BV, We therefore focus
only on the Entropy case — we set v = (b+ 1)/a, and drop the super-script é"’fb to ease the
notations.

In order for the sequence (.iﬁ(nz))nzl to be super-additive ergodic (i.e. verify (2.12)),
we need to have v < 1 so that ¢, + t5; < t,45 for any r,s € Ry (using that (¢, + t5)7 <
t} +tJ for v < 1). Indeed, super-additivity simply comes from the above remark that
Ent,;(t,4s,A) < Bt, is equivalent to Zle s — xi_lﬂl/'y < BY(®+Dt o together with
tr +ts < tr4s. This gives, as for (2.13), the following convergence (a.s. and in L!),

1
(3.10) Cip(z) = Tli_)rglo ;.,%\(rz).

Note that by symmetry, the constant Cy p(z) depends only on ||z|.

Additionally, %) (rz) verifies some scaling relations. Note that here, in view of the defi-
nition (3.4), we need to scale both coordinates in the same way: we use the map = — A2,
which preserves the condition Enta,b(tm A(’”)) < Bt, thanks to our choice of ¢, = ri -
this is crucial here, and is the main reason for our choice of time horizon. The image of T
though this map has the distribution of T1, so we obtain that

A(rz) @) B2 ()\1/27",2) .
As a consequence of this scaling relation and (3.10), for any r > 0, we have the convergence
) 1
(3.11) )\lgrolo miﬁ(m’) =1rCy1p(2).

Note that we recover the correct order for .2 only when a = b+ 1 or 7 = 1 cf. (3.8)
and (3.9), (in which case the time horizon is ¢, = r), but not in other cases. This is due
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to the constraint that rz has to be visited in the time horizon t, = r/7: when v < 1,
it somehow stretches the paths, which cannot wander as much as in the “free” case. An
idea to overcome this problem would be to consider the “free end-point” version of this
non-directed Poisson LPP in some time horizon ¢ — however preventing from the use of
super-additivity. Then, the natural question would be to determine the typical end-to-end
distance.

3.2. Discrete version. Here again, we can define a discrete version of the model (we do
it only in the entropy case), by considering the discrete domain Ay = {z € Z2, ||z|| < d}.
Then, for m < Card(A4) we consider Ty, a set of m distinct points of Ay, chosen uniformly
at random. Here we consider a discrete time horizon n, and we slightly modify the definition
of the entropy of a set A © Ay compared to (3.2), to fit the discrete setting:

|lzi — @i |® o
3.12)  Ent,,(n,A) f{§ ny << bd £, }
(3.12) nt, (1, =in T =P ny ng subdivision of [1, n]

Then, we define L,(n‘”b )(Ad) the corresponding non-directed E-LPP, and have a result
analogous to Theorem 3.2 (we display here only the analogous of (3.6)).

Theorem 3.3. We have a constant such that for any n,d, and any 1 <k < m < |Aq4|,

P(Lgf:;,s)(/\d) > k:) < (C(B;Zfb/ff))/l/am)k

The proof of Theorem 3.3 is identical to those of its continuous counterparts Theorem 3.2,
and we leave it to the reader.

3.3. Open questions and directions. Our main goal here has been to introduce a gen-
eralized Last Passage Percolation, and the results we present here give the first properties
of such models, which are already useful in some contexts, see the two potential applica-
tions we develop in Section 4 below. However, many questions are raised, and we provide
here a few important open problems that remain — some of them seem out of reach for the
moment.

(a) Show the convergence of the LPP. We have shown that the H,-LPP, E-LPP or non-
directed LPP, generically denoted L,,, are of order m" for some x > 0. What we did not
prove but strongly believe is that L£,,/m" converges (a.s. and in L') to a constant C as
m — o (cf. Remark 2.7). The next step would then be to identify this constant, or the
constant Cy,1(0) = limy_,o, +£(¢,0) in the Poissonian setting (cf. (2.13)), and its dependence
on the parameters of the model (in particular in 7 or a, b, since the dependence in ¢, A, B can
be derived thanks to scaling arguments, see Proposition 2.6, (2.14)). In Appendix A.1, we
present some simulations for the directed H,-LPP in Poissonian environment of Section 2.3
(with A and X set to 1), and we display a graph of the constant C; ;(0) as a function of ~,
see Figure 6. Another natural question is also to determine the dependence in the end-point
of the constants Cj 1 (u) appearing in (2.13).

In Appendix A.2 we present some simulations for the directed E-LPP, which do not
allow us to make some convincing predictions.

(b) Once the constant C11(0) = limy_,c +£(t,0) has been determined, the next natural
step is to identify the fluctuations of L(¢,0) around ¢C; ;(0). The question is to know
whether there is an analogue of Theorem 1.1 to the generalized LPP. As far as the directed
setting is concerned, simulations presented in Appendix A suggest that the model is still
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in the KPZ universality class. It is reasonable to believe that in the Poisson setting of
Section 2.3 (setting A = 1, A or B equal to 1, and u = 0) the convergence in (2.13) should
generalize to the following convergence in distribution

£1(t, 0) —1 C171 (0) (d)
(3.13) /3 — FouE -
(The dependence on « or on a,b is hidden in the constant C;;(0) and possibly in the
normalization of Fgyp.) According to Remark 1.2; it is also natural to expect that the
typical transversal fluctuations of a maximal path should be of order ¢%/3.

Applying the map (t,z) — (m~"t,m" 'z) as done in Section 2.3 (with x = 1/(1 + )
or K = a/(a+ b+ 1)), which preserve the constraints but multiplies the intensity of the
Poisson point process by m, the convergence in (3.13) above (with ¢t = m”) transforms to

L£,n(1,0) = Coa(0)m* (@)

(3.14) e — FouE -

As far as the transversal fluctuations of a maximal path are concerned, the transformation
above suggest that they are of order m*~! x (m®)?/3 = m>%/3-1,

When we consider the directed H,-LPP or E-LPP of Sections 2.1-2.2, in which we draw
m points uniformly in a domain Ay, rather than a Poisson point process of intensity
m/(2tx) (recall |A¢,| = 2tz), the relation above tells us that the transversal fluctuations
of a maximal path should be of order m~¢ with ¢ = (1 — 5x/3) v 0. In the case r >
3/5 the path is “blocked” by the border of the domain A;,, and oscillates much more
inside the domain. This should make the constant C = lim,, o, £,,/m" different than the
corresponding Cy,1(0) = limy_,o $£(¢,0) in that case.

(c) As far as the non-directed setting is concerned, the above discussion is even more far-
reaching: because of its “directedness”, the point-to-point Poissonian version seems useless

here to prove that the limit C = limy,_,o, Zn/m” (with k = 57%= or Kk = %) exists, even

2(b+1
if we believe it does exist. We did not perform simulations t(() te)st the value of C and its
dependence on the parameters a, b or v, because of the high computation time even for a
small number of points m. It is still reasonable to believe that the model is also in the KPZ
universality class, that is m~"/3 (L — Cm”) converges in distribution to Fgyg, and that

typical transversal fluctuations for the model are of order m~—¢ with ¢ = (1 — 5x/3) v 0.

4. SOME APPLICATIONS OF THE (ENTROPY) PATH-CONSTRAINED LPP

We now present two applications of the directed and non-directed LPPs, to the context
of polymer models.

4.1. Application I: a model for a directed polymer in Poissonian environment.
We define here a very natural variational problem, which encapsulate the energy-entropy
competition inherent to models of polymers in random environment. The random envi-
ronment is given by a Poisson point process Ty on Ry x R of intensity A > 0 (its law is
denoted P), and for 8 > 0, we define the following (point to point) variational problem

(4.1) Zy8(t) = sup {B|50T,\| fEnt(s)},

5:[0,¢]>R,s(0)=s(¢t)=0
with Ent(s) defined as in (2.6) — because T) is countable, Ent(s) is well-defined. Here,
|s n T| the number of points collected by the path, is viewed as a measure of the energy

of a trajectory s, so this variational problem constitute a simplified model to study the
energy-entropy competition of polymer models. Again, the central cases that we have in
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mind is when a = b+1 or b = 0 in the definition of the entropy (2.6), see Remark 2.4 (when
the entropy derives from the LDP of a simple random walk, we have a = 2,b = 1). The idea
of this model is similar to that of [9] which considers a Brownian polymer in Poissonian
medium. However, here, we somehow consider only the ground states, that is trajectories
maximizing the energy-entropy balance, and we also allow for more general entropy than
that of the Brownian motion (for which a = 2,b = 1).

Let us stress that the variational problem (4.1) has already appeared in [3] (in the case
a = 2,b = 1) as a solution for a Hamilton-Jacobi equation used to study the stationary
solutions of a Burgers equation (with a forcing induced by the points of a Poisson Point
Process). It has also proven to be useful for the study of the thermodynamic limit for
directed polymers, see [1].

First of all, we notice that as in Section 2.3, Z) g(t) is a super-additive ergodic sequence
— the entropy of the concatenation of two paths is the sum of the entropies of the two
paths —, so that Kingman’s sub-additive ergodic theorem gives that the limit

(4.2) FOB) = lim ~ 2, (1)

t—owo t

exists a.s. and in L', and is P-a.s. constant. The fact that there exists a constant c such that
P a.s. limsup 1 2, g(t) < ¢ (so that the constant f(), 8) is finite) derives from our estimates
in Theorem 2.3: the scheme of proof is identical to that of Proposition 4.1 below (together
with the argument in Section 2.3, see (2.15)), so we skip it — we mention that this fact was
an important part of the study in [3]. We also have scaling relations for Zy 5(t). Indeed,
consider the two following maps: (i) (t,z) — (A~%/(@+b)t \=b/(a+0) ) whose image of YT
has distribution T; and which preserves the entropy; (i) (¢,z) — (5~ (@+b)¢, gl/(a+)g)
which multiplies the entropy by 3, while preserving the distribution of Y. We therefore
obtain that

d —a/(a d _1/(a
@3)  Zapt) L 25 (A @) and 200 L B2y, (B ).

A first consequence is that we get that f(\, ) = (80N V/(@+0) £(1.1), where f(1,1) is
a constant that needs to be determined. Another consequence is that, if we consider the
alternative problem where we take A\ — oo (instead of ¢ — o0), we get that, for any fixed
positive t, 8, the limit

. 1 a a
(4.4) Jim e Eas(t) = (1, 8) = BTV £(1,1)

exists a.s. and in L1.

We considered the Poissonian point-to-point version for the sake of simplicity (in partic-
ular to be able to use scaling relations), but one could naturally define a “m-points” version
of the model. More precisely, considering the domain A; ; = [0,1] x [—1,1], and T, a set of
m points taken uniformly and independently in A 1, we can define the variational problem,
for >0

(4.5) Zmp = sup {B]s Nl — Ent(s)} .
s:[0,1]—[-1,1]

Then, in view of (4.4), we expect that a “de-Poissonization” technique would enable us
to show that there is a constant Cst > 0 such that

. 1 a a
(4.6) nlbl—r>noo Wzmﬂ = Blatb+)/(a+b)agy
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(Since Aj; has volume 2, we have an intensity of points A = m/2, so we expect that
Cst = 2¢/(@+b) £(1.1).) In the most standard case ¢ = 2,b = 1 (deriving from LDP of
the simple random walk), we therefore find that the variational problem Z,, 5 is of order
B43m?2/3 — this is much larger than v/m which is the order when we consider the case of a
uniformly bounded entropy.

We stress that one can easily find the correct order for Z,, g5 thanks to the results of
Section 2.2. Indeed, we can write from (4.5) that

(4.7) Zm,p = sup {6 sup {\sme\}—B}.
B=0 5:[0,1]>R,Ent(s)=B
Then, since in Theorem 2.3 it is proven that

sup  {|s A Tpp|} = BY @ttt pallatbsl)
s,Ent(s)<B

one readily sees that the maximum in (4.7) is attained for (and is of the order of) B =
(ﬁa—&-b-i—lma)l/(a—i-b) A (,Bm)
We can actually make this precise, and prove deviation bounds for Z,, s.

Proposition 4.1. There are constants ¢y, cg, and some Kq (depending only on a,b) such
that for any K > Ky, and provided that m is large enough so that (ﬁm“)l/(‘”b) < m, we
have

(4.8) P(Zm,ﬁ > K(5a+b+1ma)1/(a+b)> < e—crK(Bma)/erD)
(4.9) ]P)(Zm,ﬁ < %(ﬁaerJrlma)l/(aer)) < 6,chb/a(ﬁ77,L(z)1/(¢1.¢.17)

As a consequence, there is some C > 0 such that for any fived § > 0, P-a.s. there is some
mg such that

l < Zm,,@

C = (Ba+b+1ma)1/(a+b) A (Bm)

Perspectives. For this model, some important questions remain unanswered:

(i) what is the value of the constant Cst (or equivalently of the constant f(1,1))? In
view of (4.7), and since we believe that supg.s)<pils N Tm|} ~ BY(a+b+oms with
k=1/(a+b+1) and C (we used the scaling of relation (2.14) that should hold also in the
non-Poissonian case, that is, Cg = BY(@+*+1)¢)  we conjecture that the supremum in (4.7)
is equal to

ca7b(BCm”)(a+b+1)/(“+b), where ¢, = (a+0b)(a+b+ 1)~ (a+bt1)/(a+b)

(the supremum is attained for B = (8Cm*/(a + b + 1))@+b+1)/(@+b)) Since the simulations
of Appendix A suggest that the constant C is equal to 1, we can therefore conjecture that

<, for allm = myg.

Z
lim m.,B

m—o0 (Batbtlpa)l/(atd) = Capb-

(ii) what does the maximizer of Z) g(t) (or Z,, 3) look like? for example what is its
typical transversal fluctuation exponent? We mention that in [3, 4], the results are mostly
qualitative, such as the existence and coalescence of semi-infinite maximizers for this model.

We believe that this model deserves further investigation, and would lead to a better under-
standing of the energy-entropy balance in polymer models, and improve our understanding
of the Burgers equation with stationary forcing.
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Proof of Proposition /4.1. The proof is a relatively simple application of Theorem 2.3, and
makes use of the fact that the estimates (2.9)-(2.10) are uniform in the parameters.

e For the upper bound, we use the idea sketched above: for any v > 0, we decompose
the variational problem by writing

Zmp < (5 sup {]smeH) V sup ([5’ sup {‘SﬁTml}—Qkflv)_
s,Ent(s)e[0,v] k=1 s,Ent(s)e[2k—1v,2k0]

Hence, a union bound gives that

P(Zm,g>v)<]P’( sup {[sn Tpl} = fu/ﬁ) i ( sup {]sme]}>2k*1v/B>.

Ent(s)<v k—1 Ent(s)<2*v
Since SuPpy(s)<akv {lsnTml} < L 5,1“ ) , we use Theorem 2.3-(2.9) with v = K (go+b+1ma)l/(a+b)
and we obtain that provided that K is large enough,

]P)(Zm,ﬂ > K(ﬁa+b+1ma)1/(a+b))

K (Bma) 1/ (atb)
< ey (o) K(EmeTe

) 2kK(6ma)1/(a+b)

a0
Z ( —(a+b)/a

k=1
< cexp ( (ﬁm )1/ a+b))
e For the lower bound, this is easier: for any v > 0, we have that

Zmp=B sup {lsnTp|}—v.
s,Ent(s)<v

With v := (2K)~1(8oH0+1ma)/(@+b) " we obtain that

1
P(Zmﬁ < ?(5a+b+1ma)1/(a+b)) < P( Es:1(p)< {]s o) Tm]} v/ﬁ)

< exp (= K7 (Bm) Vo) x b/

where the last inequality comes from Theorem 2.3-(2.10), provided that K is large enough.

The almost sure statement holds thanks to the previous bounds, by an easy application
of Borel-Cantelli lemma.

4.2. Application II: (continuous) non-directed polymers in heavy-tail environ-
ment. The directed E-LPP have already proved to be useful to understand the transversal
fluctuations and scaling limits of directed polymers in heavy-tail random environment, see
[6]. The continuous limit of the model is found to be an energy-entropy variational problem,
and E-LPP appears central to ascertain its well-posedness. Here, we define an analogous
variational problem in the non-directed setting, and show that it is well defined. It should
also appear as the scaling limit of some non-directed polymer model in heavy-tail random
environment — that we plan on studying more thoroughly.

As a continuum disorder field, we let P := {(w;,x;,y;): @« = 1} be a Poisson Point
Process on [0, ) x R2, of intensity u(dwdxdy) = %w*‘lflll{ww}dwdxdy — it derives from
the scaling of a discrete field of disorder with heavy-tail distribution. For a continuous path
5:[0,1] — R?, we can then define the continuum energy it collects by summing the weights
in P “collected” by s (that is sitting on the trace of s), m(s) = X, . es wi- We can also

define its length ¢(s) = SO |s'(u)|du, and we consider £(s)” for some v > 1 as a measure
of its entropy. Indeed if s is a linear interpolation of a finite number of points in P, then
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£(s)” is nothing but the non-directed E-LPP defined in (3.4) witha =b+1and b+ 1 = v.
This choice derives from LDP for a random walk, and v = 2 corresponds to the moderate
deviation regime of the simple random walk.

Thanks to the non-directed LPP of Section 3, we are able to show that the energy /entropy
variational problem is well defined, when « € (2/v,2).

Proposition 4.2. For any v > 1, the following variational problem is well defined for all
B =0, when a € (2/v,2),

(4.10) 723@) = sup {Br(s) —L(s)"}.
5:[0,1]—R?
5(0)=0, £(s)<0

For 8 > 0, we have that ’Tﬁ(l') >0 a.s. and E[(’Eg(y))“] < @ for any k < a —2/v. Moreover,
for any a € (2/v,2), we have the scaling relation

(4.11) 7Y gra-z 7).
On the other hand, if a € (0,2/v], we have that Tﬁ(y) =40 a.s.

Up to now, polymers in random environment have mostly been considered in the directed
framework, see [8] for a thorough review, or in the semi-directed context of stretched poly-
mers, see [15, 29], or [10] for a review. Proposition 4.2 therefore shows that our generalized
LPP can be useful to study non-directed polymers: the variational problem can be thought
as an energy/entropy model for a continuous polymer in continuous random environment.
The main question remaining is then to describe what a maximizer of (4.10) look like.

Perspectives. The most natural question is now to consider a (discrete) non-directed poly-
mer model in random environment (the Hamiltonian being the sum of the weights of the
sites visited by the random walk), and prove its convergence to the variational problem
of Proposition 4.2, in the case of a heavy-tail environment. More generally, the study of
non-directed polymers in random environment is of great interest, and should be pursued.

Proof of Proposition j.2. The proof is inspired by that in [0, Section 4]. We fix ¥ > 1 in
the following, so we drop it from the notation 723(1') =:T3.

+ Scaling relations. For a € (0,2) and p > 0 we consider ¢,(w, ) := (p?“w, pz) which
2/e regpectively. For the Poisson point process P defined
in Section 4.2, we get that for any p > 0, ¢,(P) @ P. Then, applying this scaling with
p = B~=2) (if o # 2/v) we obtain the following scaling relation for any 8 > 0

scales space by p and weights by p

(4.12) Ts = B7a-2  sup {6*2/("“*%(3)—(6*6“/(”&*2)5(3))”} @ o

s, £4(s)<0

# Positivity. We show that for any 8 > 0, T3 > 0. Moreover we show that a.s. T3 = +00
if a € (0,2/v]. For any u > 0, let us consider D,, := [0, 00) x [—u,u]*. We have

Tz max {Bw)- (Vau).

(w,z,y)EP Dy

We observe that, by considering the ordered statistics of P D, (see the proof of Lemma 4.3
below), we get that

() 2/a - (@) —1/a
= (2 X th X = Exp(1 .
B A0} S )X (1)



DIRECTED AND NON-DIRECTED PATH CONSTRAINED LPP 20

Then, with ¢ = ﬁ_1(2)”/2_2/0‘, we obtain that

IP’(’Tﬂ > O) > lim IP(X > cu”_Q/o‘> =1, whena>2/v,

u—0

P(ﬁg = +OO> > lim IP’(X > cu”fZ/a> =1, whena <2/v.

u—00

For the case o = 2/v we consider the set G, := [871(4v/2u)?*, ) x [u,2u)?. As before we

have that, on the event P n G, # J,

(4.13) Ts = 0 (Bw} — (2v2u)" > (4v/2u)%* — (2v2u)” = (2v2u)2/ .
w,T,Y)er MYy

Since ¢1/,(P) 9 b we have that P(Pn Gy, # &) = ¢ > 0, with ¢ independent of u.

Therefore, since the events ({P N Gor # J})ken are independent, the Borel-Cantelli lemma
gives that infinitely many of them occur with probability 1, and (4.13) leads to conclude
that a.s. Tg = +00.

« Finite moments. We define, for any interval [c, d), the variational problem restricted
to paths of length 4(s) € [¢,d):

(4.14) T ([e,d)) = 8(51)161? ) {Br(s) —L(s)"}.

Then, we can write that Tz = T3([0,1)) v sup;sq T3([2%,2""1)), and observe that scaling
space by 27+ we obtain that

%([Qk’ 2k+1)) (i) sup {2(k+1)2/aﬂ_(8)/8 _ 2(k+1)1/£(5)y}
s,£(s)€[1/2,1)

<2 tD2ag qup  w(s) — 2.
s,4(s)<1

Below, we show the following lemma.

Lemma 4.3. For any o > 1/2, and any v < «, there is a constant ¢, such that for any
t > 1 we have

(4.15) IP’( sup w(s) > t) <t
s,4(s)<1

Hence, for « > 1/2 and v < «, for any t > 1 A 3, we get by a union bound that
+0

P(Ts > t) <P(T3([0,1)) > t) + > P(Tp([2",2""1)) > 1)
k=0

+00
<P( sup w(s)>t/B) + Z IP’( sup w(s) > ok FD2eq 4 2]“’))
k=0

s,4(s)<1 s, 0(s)<1
+00
2
Bt e S ()0 < e (E).
k=0

The last inequality holds by separating the terms 2¥ < ¢ (k < %logQ t) and 28 > t
(k < Llogyt) in the last sum. Since v can be arbitrarily close to a, for any k < a —2/v we
have that there exists a constant ¢, = c¢.() such that for any ¢ > 1

(4.16) P(Ts>1) <cut™™.

This concludes the proof that E[(73)"] < oo for any x < a — 2/v, and it only remains to
prove Lemma 4.3.
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Proof of Lemma 4.3. Since we consider the optimization problem with length smaller than 1,
we can restrict the Poisson point process P to the disk Dy = {z € R? |z| < 1}. We can
then rewrite a realization of P using its ordered statistic P = (M;, X;)i>1, where M;
is the i-th largest weight, and X; its position. The distribution of (M;, X;);>1 can be
given as follows: (M;);>1 and (X;);>1 are independent, X; are i.i.d. uniform in D;, and
M; = 7/(Ey 4 --- 4+ E;)~V/*, where (E;);>; are i.i.d. Exp(1) random variables.

Then, we have that 7(s) = >~ M;1x,es, and using that M; is non-decreasing, we get
that

0 2j+1 0
(4.17) m(s) = Z Z Milx,es) < Z Myi Zyi+1
§=0;=27 J=0

where .7}, is the non-directed LPP defined in (3.5), with set of points Ty, := {X1,..., X;n}
(with r = 1,t = 1,b = 0,a = 1, B = 1). Now, we will use that .%; is of order v/i and M; of
order i~ Since a < 2, we can fix some ¢ > 0 (small) such that 1/a — 1/2 > 26, and by
a union bound, we get that

(4.18) P( sup 7(s) > t) < Z ]P)(szggjﬂ > cs t(2j)1/271/o‘+25>

S,Z(S)Sl j:O

where c5 = (2j20(2j)1/2—1/a+25)—1_
Then, we use Theorem 3.2-(3.6) to get that there is a constant ¢y, independent of C,
such that

(4.19) P( Ly > Clogt(2)1/2+0) < e~ 0Clogt(Z)” < 4=eaC(2)"

On the other hand, we also have that i/*M; = wl/o‘((El + -+ Ei)/i)_l/a, so that

E[(i'/*M;)1=9] is bounded by a constant that depends only on 6. Markov’s inequality
then gives that for any C’

t N 1/a c Vs (1—8)er i —S(1—5)en
(4.20) P<M2j >C/@(2j) Y +6> < m(logt)(l 9ay=(1-9) (27) 0(1=0)e

Combining (4.19)-(4.20), we get that

P(M2j$2j+l >cCs t(2j)1/2_1/a+25>
i cs 1 L
< P<$2j+1 > Clogt(2])1/2+6> + [P(M2j > 5@(%) 1/a+6>
< t—coC'(Qj)‘5 + Cgt—(l—Qé)a(Qj)—é(l—é)é’
so that summing over j in (4.18), we get that
P( sup 7(s) > t) <to¢ 4 Cf;t_(l_%)a < 2cgt_(1_25)°‘.
s,4(s)<1

The last inequality holds provided that C has been fixed large enough. This concludes the
proof, since § is arbitrary. O

5. PROOFS OF THE PATH-CONSTRAINED LPP BOUNDS

We prove here Theorems 2.1-2.3-3.2. The almost sure statements are straightforward
applications of the first parts of the theorems (via the Borel-Cantelli lemma), so we skip
their proof. The ideas are similar to those developed in [6, Part 1], in a special case of the
E-LPP.
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5.1. Holder-constrained LPP. We prove first (2.4), and then (2.5).

Upper bound. Define Hj(t, A) the set of k (ordered) elements up to time-horizon ¢ that
have a y-Holder norm bounded by A:

Hy(t,A) = {(tivxi)1$i<k§ 0<ty <-- <t <t,H,((ti, zi)1<i<k) < A}-
Then, we are able to compute exactly the volume of Hy(¢, A).

Lemma 5.1. For anyt > 0 and A > 0, we have for any k > 1

_ r DA+ i
Vol(Hg(t, A)) = (24) PR 1) + 1)t 147)

In particular, it gives that there exists some constant C = C, < c¢(1 + 7)_1/2 such that

C’Atlﬂ)k

Vol(Hi(t, A)) < (555

Proof. The key to the computation is the induction formula below, based on the decompo-
sition over the left-most point in H (¢, A) at position (u,y) (by symmetry we can assume
y = 0): it leaves k — 1 points with remaining time horizon t — u:

t AuY

Vol(Hy(t, A)) = 2J Vol (Hy—1(t — u, A))dydu = 24 Lt uYVol (Hp—1 (t — u, A))du.

u=0 Jy=0

We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation.

For k = 1, the computation is easy:

t AuY t 24
Vol(H (t, B)) = 2 f f dudy = 2A f wdu = ——t17,
u=0 Jy=0 0 I+~

For k£ = 2, by induction, we have

k—1 ¢
Vol(Hk(t,A)) = (24)F L +7) X f w (t — u)(k—l)(lﬂ)dw
L((k—=1)1+v)+1)  Juzo
Then, by a change of variable w = u/t, we get

t 1
f u (t — u)(k—l)(1+’y)du — (k=1 (A+y)+y+1 f wi(1 - W)(k_l)(l+7)dw
u=0 0
DOy + DT ((k =D +9) +1)

_ tk(lJr'y
C(k(1+7)+1) ’

and this completes the induction.

For the inequality in the second part of the lemma, we use Stirling’s formula to get that
for any o > 0, as k — o0 we have I'(ka + 1) ~ v/2mak(ka/e)*®. Hence, with the formula
for Vol(Hy(t, A)), we end up with the bound

c 2AD(1 + )t \F At b
o ) < S () < ()

where we used that I'(1 + v) ~ y/27y(y/e)” as v — oo for the last inequality. O
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A
We then use this Lemma to control the probability that ﬁg{ 2 (At ) is larger than some k:
A
(5.2) P(ﬁg”)(Am) > k) = PV > 1) < B[N,

where Ny, = Card{A < T,,; A € 7—[,‘;‘} is the number of sets of k£ points in Y, that are
Hf—compa‘cible. Since all the points of Y, = {Z1, ..., Z,,} are exchangeable, we have

E[Nk] = (7:)[?(3 o€ B s.t. (Zo(l), .. .,Zg(k)) € Hk(t,A)> .

Since the (Z;)1<i<m are i.i.d. uniform in Ay, = [0,t] x [—x, z] (of volume 2tx), we get that

m Vol (H(t, A
(5.3 i = (1) x e

where the k! comes from the fact that we rearrange the Z;’s so that 0 <t < --- <t} <.
Using Lemma 5.1 together with (7]?) < mF/k1, we therefore obtain that

(HD) CA'm\*
(5.4) IP’(Em” (Ara) > k:) < <ka
This gives the upper bound (2.9).

Lower bound. For any k > 1, let us consider the following sub-boxes of A; ., for 1 < ¢ < 4k:
=1t it) [ A(t/k)Y A(t/k)Y ]
Bl.—[ TR X 5 AT, 5 Azx|.
Then, we realize that if there are at least k boxes among {Bg;}1<;<or containing (at

least) one point, then this set of k points has a y-Holder norm which is bounded by
A(k/t)Y/(t/k)Y < A. Hence, we get that

(55)  P(LoT (Mea) > ) < P(sz Lty < K) = P(ikj Ly ety < ) -
i=1 =1

For the last probability, we use a union bound and the fact that the Ly, ~s,|—0} are
exchangeable, to get that

2 2% g
1-— P(E v, ABy| =0} < k) < (k >P<Tm N U B; = @)
i=1 1=1

B AtY 1>m'

sk " 1
In the second inequality we used that T,, is a set of m independent random variables
uniform in A, (of volume 2tz), and that Uf;l B; has a volume of ($At'*7k~7) A & Then,
we use that 1 —x < e™* for any z, to get that

P20 00 <#) <o fen(1-o( 2/ 2 1))}

which concludes the proof of the (2.5).

(5.6) < 2%(1

5.2. Entropy-constrained LPP. We prove first (2.9), and then (2.10). The proofs are
analogous to that of the Holder case (and to what is done in [0, Section 3]), we give the
details for the sake of completeness.
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Upper bound. Define Ej(t, B) the set of k (ordered) elements up to time-horizon ¢ that
have an entropy bounded by B:

Ey(t,B) = {(ti,wz‘hgisk; 0<ty <-- <ty <t,Bntep((ti, 2:)1<ick) < B}~
Then, analogously to Lemma 5.1, we are able to compute exactly the volume of E(t, B).

Lemma 5.2. For any t > 0 and B > 0, we have for any k > 1
1 b
k F(a)k F(%)k % BF/ak(a+b)/a
k b ’
L(&+1) (ke 1)
In particular, it gives that there exists some constant C' = Cyp such that
CBl/at(a+b)/a k
k(a+b+1)/a )

Vol(Ej(t, B)) = 2% (1)

Vol(Ey(t, B)) < (

During the course of the proof, one finds that C,p, < c(a + b)~ /2.

Proof. Again, using a decomposition over the left-most point in Ej (¢, B) at position (u,y)
(by symmetry we can assume y > 0): it leaves k — 1 points with remaining time horizon

Iyl

t —u and constraint B — , we obtain the key induction formula below

l/a

(Bub)
Vol(Ek (t, B = ZJ J Vol Ek 1(t —u, B— —))dydu

We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation (slightly more involved than that of the previous section).

First of all, we have for kK =1

t Bub)l/a t
VOI(El(t, B)) = QJ f dudy = 2B1/CLJ ub/adu _ QBl/a - bt(aer)/ )
0 a

For k£ > 2, by induction, we have

ikl T I(atb)k—t
Vol(Ex(t, B)) =271 (3) T((k—1)/a+1) r((k - 1)(a+b) +1)
Bub)l/a . B
f J w) =D Da(p %)(k /4 g du,

Then, by a change of variable z = y¢/(Bu’), we get that

(Bub)/e 1
f (B — 1) k—Diag, _ B(kl)/af (1 2)(k=Dja L1/a=1 gija,bag,
u 0 a

y=0
_1 Ak’/aub/a F((k B 1)/(1 + 1)F(1/a)
“ T(k/a)

Moreover, we also have, with a change of variable w = u/t

t 1
J Wb/t — ) E=Datb)/agy, _ yk=1)(a+b)/atb/a+1 J wh/a(1 — ) F=Da+b)/a gy,
0
_ katb)/a L'(b/a+1)T((k—1)(a+b)/a+1)
T(k(a + b)/a + 1) ’

u=0
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and this completes the induction.

For the inequality in the second part of the lemma, we use again Stirling’s formula to
control I'(k(a + b)/a + 1) and T'(k/a + 1), and we obtain
he (R esete

T kV1jay/(a+0)/a\ (e=1/a) V" (e=1(a + b)/a) TV K /akatt)a )

Thanks to the asymptotics of I'(«) as @ — +00 and o — 0, we find that there is a constant
¢ such that for all a,b

| a CBl/at(a-‘rb)/a k
Vo (Ek(t,B)) < m ((a + b)l/le/ak(a-ﬁ-b)/a) ’

Vol(Ey(t, B

O

Again, as for the Holder case, we use this Lemma to control the probability that

gB
Ein“’b)(At,x) is larger than some k: similarly to (5.2)-(5.3), we get that

() m Vol(Ey(t, B)) CB/ap(a+b)/ay, \ *
P(Ln"" (Ars) > k) < <k> ey <\ mremE )

where we used Lemma 5.2 together with (7?) < mF/k!. This gives the upper bound (2.9).

Lower bound. The proof is very similar to that in the Holder case: for any k > 1, consider
for 1 < < 4k the sub-boxes of A;,
. [(i — 1)t it) y [ BY/a(t/4)b/a Bl/a(t/4)b/a ]

L 4k 4k 2k (b+1)/a NT ok (b+1)/a )

Then, notice that if there are at least k& boxes among {B2;}1<;<2r containing (at least) one

point, then this set of k£ points has an entropy which is bounded by

(Bl/a(t/4)b/ak7(b+1)/a)a
(t/4k)P <

Hence, we get similarly to (5.5)-(5.6) that

P(ﬁﬁf‘ﬁb)(At,m) < k:) < (2:>P(Tm N Q&; - @)

Bl/atb/a 1\m
T gblap(atb)jay 1)
In the second inequality we again used that T, is a set of m independent random variables

Bl/a(t/4)(a+b)/a tr
f LT D/a N

(5.7) < 2%(1

uniform in Ay, (of volume 2tx), and that Ule B; has here a volume o
Therefore, we obtain that

P(E,(jf’b)(l\t,x) < k) < exp {ck(l - c(% A 1) 7:)} )

which concludes the proof of (2.10).
5.3. Non-directed E-LPP. We proceed analogously to the two previous sections. The

calculations are similar to the Section 5.1-5.2. Recall that we only deal with the Entropy
case, since the Holder case is identical, see (3.3)-(3.4).
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Upper bound. Let us define the sets of k elements (with order) of R? that have an entropy
up to time horizon ¢ smaller than B,
Er(t,B) = {A = (xi)1<i<k ; Entgp(t, A) < B}

k

= {A = (Ti)1<i<k Z s — fUi—lHa/(bH) < D} =: Ek(D) )
i=1

with D = (Btb)1/(+1) — we used (3.4) to get the second equality. Here again, we are able to
compute the volume of Ej (D). For simplicity, let us set v = (b+ 1)/a (as in Remark 3.1).

Lemma 5.3. For any D > 0, we have for any k > 1
k F(2’7)k D2k
I'(2kvy +1)

In particular, recalling v = (b+ 1)/a and D = (Bt*)Y/(+Y) it gives that there exists some
constant C = Cqy, such that

Vol(E(D)) = (277)

C(Btb)2/a k
k2(b+1)/a )
Proof. We prove the first part of Lemma 5.3 by iteration. Note that we easily have that
E1(D) is a disk of radius D7, so that Vol(E{(D)) = wD*. For the iteration, we use for
k = 2 the recursion formula

DY

Vol(Ek(D)) = Jo QWTVOI(Ek_l(D - rl/v))dr

k-1 D7
= (o F(2(Fk(271)v +1) J (=P
- 0

Then a change of variable u = D~1r!/7 gives that

Vol(Ex(t, B)) < (

D 1
2=y 2kny 27=1(1 _)2=D7 gy — 2k7r(2’7)r(2(k —y+1)
L r(D-r'/7) dr =vD Y (1—u) du=7D T(2ky + 1) ’

which concludes the induction.

For the second part of the lemma, we use again Stirling’s formula to get that I'(2ky+1) >
(ck)?*7, and we obtain

~ 2T (27) D?7 \ k
Recalling D = (Bt?)Y/®+Y) and v = (b + 1)/a, we get the conclusion. O

(g;t,B
We then use this Lemma to control the probability that .,2”,7(1 ab)

some k: similarly to (5.2)-(5.3), we get that

(A,) is larger than

stB
P(.,sﬁfl ) (A) > k) < E[ ] = mFP((Z)1<ick € Bi(t, B)).
Here, 4, is the number of k-uples in Y, that are gj’f(t) compatible, and (Z;)1<;i<k are
i.i.d. random variables, uniform in A, the disk of radius r. Then, with Lemma 5.3, we get
that

otB
(5.8) P(.zfz ab)

b\2/a k
- mkVol(Ek(t, B)) _ (C(Bt")**m
(ﬂ-TQ)k r2k2(b+1)/a

(A) = k)
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This gives the upper bound (3.6).

Lower bound. The proof is analogous to that in the directed context, with some adaptations
to deal with the non-directedness which make the proof more technical.

We consider a partition of the plan into small squares of side § := 7r/4/m: for any

€ (6Z)* we let B, be the square of side J centered at z. It is easy to see that there
are at least m/4 disjoint squares B, (provided that m is large enough) that can be placed
into a rectangle (inscribed in A,) ordered as follow: we let £y = 0 and then we enumerate
T1,..., Ty following a spiral in a clockwise way, in order to have that any two consecutive
By, By, are adjacent (see Figure 4).

Then, since a square B, has volume 72r?/m (and recalling A, has volume 7r?), B
contains at least one point of T, with probability 1 — (1 — 7/m)™ > 1 — e~ ™. We define
(/4 the number of non-empty squares among By, ..., By, 14> and we deﬁne iteratively the
indices [; of the non-empty squares, by Iy = 0 and for 1 < j < Q4

IjZin{i>Ij_1 ; Bmzﬁ’rm#@}

FIGURE 4. In the picture we put m = 24 points uniformly on A, and we consider a rectangle
built by 6 = m/4 squares By, - - , Bz5 enumerated following a spiral in a clockwise way starting
from the origin. Then we consider the non-empty rectangles (in orange) and their indices. In this
example we have I = 1,I> = 2,13 = 5. Finally we draw a path starting from the origin and
collecting one point in exactly all By, ,-- -, Br,.

For k > 1, and if Q)4 = k, we may consider a path A collecting one point in exactly
all By, ,..., By, : the entropy of such A is bounded by (see Figure 4)

1 $ a b+1 400 k bl
(S A (S
j=

gt,B

where we set U; := (I; — I;_1)%®*1). Therefore, for .Z,SL @b )(AT) to be smaller or equal

than k, one needs to have either @),,,;4 < k or that the entropy of A chosen above is larger

than B: this leads to
(&)

(5.9) P(‘iﬂm T(A) < k) < P(Quja <k) + P<Qm/4 k, Z U; > <Btb “/2>1/(b+1)> |

4@7»(1

For the first term, and for k < e?m/4 (with ¢ > 0 small, ﬁxed in a moment), we realize
that @,,/4 < k implies that there are at least (1 —e?)m/4 empty squares, which gives by a
union bound that

(1—-e2)m/4

Qs < 1) < (g Ty P (Y7 U Ba-g)<en(i- sy
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2

where for the second inequality, we used that the volume of Uz(lzls Jm/4 B,, is (1—e?)m2r?/4.
We note that the constant c. goes to 0 as € goes to 0: we can therefore fix € > 0 sufficiently
small so that

(5.10) P(Quys < k) <e ™8 forall k<e’m/d.

For the second term in (5.9), let us write V := k! (Bt’m /2 [y )1/ D _ e will consider
only the case when V is large —, so that we need to bound

(5.11)
k
(Qm/4 <k, Z U; > kV) P(Nj, > em) +]P(Qm/4 <k,Ny<em, Y U;> kV) :
j=1
where N denotes the total number of points in the non-empty squares B, o , Bz I We

easily have that

1 (m)\ mk\em . (wk)"™
P(Ny, > em) < e <€m> (*) <eF——

m (em)!’
where the denominator in the first inequality comes from the fact that we work conditionally
on the fact that k squares are non-empty (which has probability bounded below by e~).
Hence, since we work with k < e2m/4, and provided that e has been fixed small enough,
we get that there is a constant ¢ > 0 such that P(Ny, > em) < e™“™.
For the last part, note that since the squares B, are exchangeable, we can control for
1<y < < < m/ 4

P(Il =i1,...,]k =Zk;Nk <€m)

B Z m <7T>n1+.--+nk (1 ﬂ-ik>m—(n1+.--+nk)
B ny,...,Ng m m

MYy,
I<ni+-+np<em

(1 _ %)“‘ﬂm 3 T LT (i gk
m S nq! !
1<ni+-+np<em
Where we used that in order to have Iy = iy,...,I; = 1, there must be exactly k£ non-
empty squares among the first iy (with nj,...,ng points in them) and i, — k empty. The

remaining m — (ny + - - - + ny) points must be outside the first i squares. For the second
inequality, we used that ni+- - -+ng < em, and that the multinomial coefficient is bounded
by m™ Tt /(1. .. ng!l). Hence, there is a constant ¢ such that

P(I =i1,..., Iy = i Ny <em) < e x P(Gj = ij —ij_1 forall 1 <j<k),

where (G);>1 are i.i.d. geometric random variables, of parameter 1 —e~ (1287 We therefore
obtain that, provided that V is large enough

e

P(Quja < k. N <em. 321 Uy > k) < e D @) > kV)

(5.12) <e V.,
To conclude, we have obtained that there are constants such that for k < e2m/4, and
for V.= k! (Btbma/Q/ra) L/(b+1) large enough,

t,B
(€0 )

(5.13) P(zm (A < k) <e oM 4 e RV
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One obtains (3.7) by observing that when V is small e=¢k(V—1)

statements holds for all k£ < m by adjusting the constants.

is larger than 1. The

APPENDIX A. FURTHER SIMULATIONS AND CONJECTURES

In this appendix, we present further simulations, that help us make some predictions
on the values of the constants in (2.13), and support the belief that the model is in the
KPZ universality class. We treat only the directed case because in the non-directed case
simulations are much more greedy and do not bring any convincing insight — we admit that
our algorithm could be improved, but our goal is simply to hint for some conjectures, and
our simulations fills that role perfectly. We start by commenting simulations in the H,-LPP
case, where simulations are exact (and efficient), before we turn to the E-LPP case.

A.1l. Directed H,-LPP. For the H,-LPP, we performed two different simulations, in the
Poissonian context of Section 2.3 —focusing on the point-to-point H,-LPP, so we write
£(t,0) for £ (¢, 0).
(1) We ran (a few) simulations for ¢ = 1000 (with A\, A = 1, restricting to the box [0, ¢] x
[—#2/3,#%/3]), in order to test the value of the constant C = Cy,1(0) = limy_,o 1£(2,0)
in (2.17). The results are presented in Figure 6, and commented below.
(2) In order to test the convergence in distribution of the recentered H.-LPP, t~1/3(L(t,0)—
Ct), we built histograms by running k = 103 simulations of the H,-LPP for ¢ = 500
(with A, A = 1, restricting to the box [0,#] x [—t*3,¢*3]), for three values v = 0,
v = 0.5, v = 1.5. The results are collected in Figure 7, and commented below.

(1) Value of the constant. Let us present here our results for simulations for the value of
the constant, performed for t = 1000, in the box [0,t] x [—t%3,¢%/3], with intensity A = 1
and with a constraint A = 1.

FICURE 5. Simulations of optimal paths for the H,-LPP with ¢ = 1000 (intensity
A = 1, constraint A = 1), for different values of . The same set of points is used in all
four simulations. For v = 0 we have here L(¢,0) = 2707, for v = 0.5 £L(¢,0) = 1715, for
v =1 L(t,0) = 1408, and for v = 1.5 L(¢,0) = 1238. We refer to Figure 6 for a graph
presenting how the constant C1,1 = lim;—q +£(t,0) depends on 7.

Our simulations are in accordance with the fact that %E(t,O) converges a.s. to some
constant, whose dependence on + is presented in Figure 6 (we present the result of only
one simulation, but several simulations give values for %E(t, 0) very close to those presented
here). In view of the dependence on  of the constant ¢; in Theorem 2.1 (see in particular
(5.1)), a wild guess is that the constant is proportional to (1 4+ v)~'I'(1 + 7)Y+ the
dotted grey line in Figure 6 represents the function vy — %F(l +7) 1/(1+9) _ the factor 23/2
is chosen so that it fits the value /2 when v = 1, corresponding to the standard Lipschitz
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0.0 0.5 10 15 2.0 2.5 3.0

FICURE 6. Approximated values of the H,-LPP constant: the function represents the
value of $L£(t,0) with ¢ = 1000 (intensity A = 1, constraint A = 1), for different values

of v € [0,3]. The dotted grey line represents the function v — %F(l + )YV which

seems to be a good candidate to fit the values of %[,(m 0). We refer to Figure 5 for the
corresponding paths for v = 0,0.5,1, 1.5.

LPP (the missing factor v/2 comes from the length of the diagonal in Hammersley’s LPP
process). The two curves match quite closely, but they seem to disagree when v = 0 (the
constant Cp 1 seems very close to 2.75, whereas 23/2 ~ 2.83).

(2) Convergence of the recentered and renormalized LPP. In order to test the convergence
in distribution of t~1/3(L(t,0) — Cy1t), we performed 1000 simulations for the point-to-
point H,-LPP with ¢ = 500 (again with intensity A = 1, and constraint A = 1, in the
box [0,t] x [—t%/3,%/3]), for the three values v = 0, v = 0.5 and v = 1.5. The histograms
presented in Figure 7 seem to confirm the convergence in distribution to a Tracy-Widom
GUE limit.

0.020

0015

0.010

0.005

0.000

1300 1320 1340 1360 1380 1400

(a) vy =0. (b) v =0.5. (e) v = 2.

FIGURE 7. Histograms of k = 10 simulations of the point-to-point H,-LPP in Poisson envi-
ronment (with A =1 and A = 1) with ¢ = 500. The three subfigures (a), (b) and (c) correspond
to the cases v = 0, v = 1/2 and v = 3/2 respectively. In each case, we also present the graph of
the Tracy-Widom GUE density, after a recentering by C~t (with C, &~ 2.75,1.75,1.26 from left to
right), and a renormalization by c,t'/® (with ¢, ~ 2.5,1.3,0.65 from left to right).

All together, this leads to a (far-reaching) conjecture, for the (point-to-point) H,-LPP.

Conjecture A.1. For everyy = 0, there exists a constant C., (equal to %F(l—i—’y)l/(”w ?)
and a constant ¢, such that, for the point-to-point H,-LPP in Poisson environment with
intensity A = 1 and ~y-Holder constraint A = 1, we have

L(t,0) —Cyt (a)
C’Y t1/3 t—00

(A.1) Fouvg ast— 4.
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A.2. Directed E-LPP. As far as the directed E-LPP is concerned, we also performed
simulations in the setting of Section 2.3 with ¢ = 100, with a Poisson intensity A = 1 and a
constraint B = 1 (within the box [0,#] x [—#%3,¢%/3]). Simulations are much less efficient,

and the simulated annealing procedure only gives an approximate (under-estimated) value

B
for £(t,0) = £ (¢,0).

-10
o 20 W 50 &0 100 5 20 w0 50 50 100 o 20 w0 0 80 100

FICGURE 8. Simulation of Poisson point-to-point E-LPP with ¢t = 100 (with intensity A = 1
and constraint B = 1), via a simulated annealing procedure. The plots represents a path which
collects a number of points that approximate L£(t,0), with different parameters a,b, in order to
test the value of the constant C1,1(0) = limyo $£(¢,0) in (2.13). From left to right we have:
a=2,b=1(C~183),a=4,b=1(C~196),a=1,b=0(C~2.08),a=2,b=0(C=~ 2.55).

Figure 8 presents some simulations to test the dependence of the constant C;1(0) =
limy_, o0 %E(t, 0) on the parameters a,b. We give some values for the constant, and the only
conjecture we may risk to formulate (thanks to simulations for others values of a, b that we
do not present here) is that the constant should be non-decreasing in a and non-increasing

in b. Further conclusions are hard to draw from these simulations.

o —
160 165 170 175 180 185 190 195 200

FIGURE 9. Histogram of 1000 realizations of L£(t,0) for ¢ = 100 (with intensity A = 1 and
constraint B = 1), with a = 2,b = 1. We also plotted the graph of the GUE density, centered by
Cant With Cap & 1.89, and rescaled by cqp t/2 with cqp ~ 1.4.

The histogram presented in Figure 9 makes it natural to conjecture that for every a,b
there exists some constant C,j, such that for the point-to-point E-LPP in Poisson envi-
ronment with intensity A = 1 and entropy constraint B = 1, we have the convergence in

distribution

L(t,0) — Capt
—( ) = Cas QFGUE as m — 0,
Cab t1/3

with ¢4 a renormalization constant.
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