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Abstract. Hammersley’s Last Passage Percolation (LPP), also known as Ulam’s prob-
lem, is a well-studied model that can be described as follows: consider m points chosen
uniformly and independently in r0, 1s2, then what is the maximal number Lm of points
that can be collected by an up-right path? We introduce here a generalization of this
standard LPP, in order to allow for more general constraints than the up-right condition
(a 1-Lipschitz condition after rotation by 45˝). We focus more specifically on two cases:
(i) when the constraint comes from the γ-Hölder norm of the path (a local condition),
we call it H-LPP; (ii) when the constraint comes from the entropy of a path (a global
condition), we call it E-LPP. These generalizations of the standard LPP also allows us to
deal with non-directed LPP. We develop motivations for directed and non-directed path-
constrained LPP, and we find the correct order of Lm in a general manner – as a specific
example, the maximal number of points that can be collected by a non-directed path of
total length smaller than 1 is shown to be of order

?
m. This new LPP opens the way

for many interesting problems, and we present some of its potential applications, to the
context of directed and non-directed polymers in random environment. Several problems
remain open.
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1. Introduction

In this introduction, we recall the original Hammersley’s LPP of the maximal number
of points that can be collected by up/right paths, also known as Ulam’s problem [25] of
the maximal increasing subsequence of a random permutation. This problem has been the
object of an intense activity over the past decades, culminating with the proof that it is
exactly solvable, and in the so-called KPZ universality class. We show how to generalize this
process by enlarging the set of paths allowed to collect points, by changing the increasing
constraint (or a 1-Lipschitz constraint, by a 45˝ rotation), to a more general compatibility
condition. We point out that the compatibility condition in the Hammersley’s LPP is local,
that is, the constraint to collect points depends only on two consecutive points. Conversely,
a global condition is a constraint that takes in account the whole path trajectory that
collects points.

In Section 2, we introduce some specific constraints of interest (local and global) in the
directed setting and we derive the correct order for the LPP problems. In Section 3, we
define a natural framework to be able to consider non-directed LPP and we also derive its
correct order. Let us stress that in this article we put forward the interest of these models,
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1



DIRECTED AND NON-DIRECTED PATH CONSTRAINED LPP 2

focusing on simpler results in order to provide motivations for our study. The techniques we
use are robust, and our results already have many possible applications, as seen in [6] or as
developed in Section 4, where as one example we relate our results to the Hamilton-Jacobi
equation considered in [3] to study stationary solutions for the Burgers equation. For this
reason we do not pursue for optimal constants or for more precise convergence results, since
it would bring many technicalities, and since it would dilute our core message. We conclude
the paper by presenting some simulations, which help us to formulate a few conjectures on
the convergence of the models, see Appendix A.

1.1. Hammersley’s Last Passage Percolation. Let us take m points independently
as uniform random variables in the square r0, 1s2, and denote the coordinates of these
points Z1 :“ pt1, x1q, Z2 :“ pt2, x2q, etc... We say that a sequence pzi`q1ď`ďk is increasing if
ti` ą ti`´1

and xi` ą xi`´1
for any 1 ď ` ď k (we set by convention i0 “ 0 and z0 “ p0, 0q).

Then, the question is to study the length of the longest increasing sequence among the m
points which is equivalent to the length of the longest increasing subsequence of a random
(uniform) permutation of length m. We denote:

Lm :“ sup
 

k ; D pi1, . . . , ikq s.t. pZi`q1ď`ďk is increasing
(

Using subadditive techniques, Hammersley [13] first proved that m´1{2Lm converges a.s.
and in L1 to some constant, that was believed to be 2. Further works then proven that the
constant was indeed 2 [19, 26]. Moreover, and quite remarkably, this model has been shown
to be exactly solvable by Baik, Deift and Johansson [2], and they identified the fluctuations
of Lm around 2

?
m, showing that the model is in the so-called KPZ universality class. More

precisely, in [2] the authors showed the following result.

Theorem 1.1 ([2]). We have the convergence in distribution

Lm ´ 2
?
m

m1{6

pdq
ÝÑ FGUE ,

where FGUE is the Tracy-Widom GUE distribution.

Moreover, Johansson [17] proved that the typical transversal fluctuations of a path col-

lecting the maximal number of points is of order m´1{6.

Remark 1.2. Let us stress that the context of [17] is actually slightly different: Johansson
considers up-right paths going from p0, 0q to pN,Nq in a Poisson Point process of intensity
1: he shows that the typical transversal fluctuations (away from the diagonal) of a path

collecting the maximal number of points is of order N2{3. One recovers the setting presented
above after rescaling by 1{N to reduce to r0, 1s2, with a Poisson point process of intensity
m “ N2 instead of a fixed number m of points: it therefore tells that the transversal
fluctuations of a maximal path is of order N´1N2{3 “ m´1{6.

Let us also mention that in [11], the case when the points are not chosen uniformly
in r0, 1s2 but have some given density ppx, yq has also been solved: the limiting constant
limnÑ8 Lm{

?
m and the limiting curve are identified.

1.2. General definition of path-constrained Last Passage Percolation. We now
perform a 45 degree clockwise rotation, and generalize Hammersley’s LPP by introducing
a general constraint on paths (that can be either local or global): we introduce it via a
notion of compatibility of the points that can be collected. We need three ingredients:

‚ a domain Λ;
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‚ a (finite or countable) random set of points Υ Ă Λ, whose elements are denoted by
Zi “ pti, xiq and its law is denoted P;

‚ a compatibility condition, i.e. a set C of compatible subsets of Λ.

Then, we define the C-compatible Last-Passage Percolation as the maximal number of C-
compatible points in Υ, that is

(1.1) LpCqΥ “ LpCqΥ pΛq :“ sup
!

|∆| ; ∆ Ă Υ,∆ P C
)

.

Remark 1.3. This fits the definition of Hammersley’s LPP as defined above: the com-
patibility set C being the set of all increasing subsets of r0, 1s2. We can also define it, in
an equivalent manner, after a rotation by 45˝: we take the domain Λ :“

 

px, yq, 0 ă x ă
?

2, |y| ď minp1, 1´ tq
(

, and we use Υ “ Υm a set of m independent uniform random vari-
ables in Λ. The compatibility set is then taken to be (with the convention pt0, x0q “ p0, 0q)

C “
ď

kě0

!

∆ “ tpti, xiqu1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă
?

2,
|xi ´ xi´1|

|ti ´ ti´1|
ď 1 for all 1 ď i ď k

)

,

which corresponds to sets of points that can be collected via a 1-Lipschitz function. The
Poissonian (point-to-point) version of Hammersley’s also LPP can also be recovered by
considering Υ a Poisson point process on R2 with intensity λ ą 0, and Λ “ r0, ts ˆR, with
the same 1-Lipschitz compatibility condition as above.

Now, there are at least two reasonable ways of defining the compatibility condition: (i)
by replacing the Lipschitz condition by a Hölder constraint; (ii) by considering an entropy
constraint (a global constraint on the path, for instance on its Sobolev norm), that also
allows to deal with non-directed paths. We restrict ourselves to the case of the dimension
d “ 2 for the simplicity of the exposition, but all our definitions and reasonings can easily
be extended to the case of higher dimensions. We start with the case of directed paths in
Section 2, and then discuss the non-directed case in Section 3. We present some potential
applications in Section 4.

Several other constraints can be (and have been) considered, and let us mention a few.
For instance the constraint that the path is convex has been studied in [1], and is related
to the question of counting the number of lattice convex shapes, see [5, 24, 27] and more
recently in [7]. The question of pattern-avoiding permutation has also gained some interest
recently, see in particular [14, 20, 21]. Thinking about a polymer model, one may also think
of a local “flexibility” condition for the set ∆ “ p∆iq1ďiďk by considering the constraint

0 ď θp1q ď infi |θi| ď supi |θi| ď θp2q ă 8, with θi the angle between the segments r∆i´1,∆is

and r∆i,∆i`1s (and θ0 :“ 0). This would model the stiffness of the polymer. In this paper
we do not pursue in this direction.

We also mention that in [28], the author considers a related problem: the question is
to obtain criteria for the existence of “regular functions” f : R Ñ R (with several type of
constraints, such as continuity, bounded variations, etc...) whose graph interpolates between
random subsets of parallel vertical lines. This can be thought as a first passage percolation
analogue to our problem, with a different distribution for the set of points considered.

2. Directed LPP: Hölder and entropy constraints

In this section, we consider directed paths. We work with a domain Λt,x “ r0, tsˆr´x, xs,
for some (fixed) t, x ą 0. Then, we consider m independent r.v. uniform in Λt,x to form
the set Υm. We will use Lm as a short notation for LΥm . Moreover, we say that a set
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∆ “ tpti, xiqu1ďiďk Ă R` ˆ R is directed if 0 ă t1 ă ¨ ¨ ¨ ă tk. We deal first with the local
constraint (Hölder constraint), before we turn to the global one (Entropy constraint).

2.1. Local Hölder constraint. The first natural generalization of the 1-Lipschitz con-
dition is to consider a Hölder constraint instead – the constraint is local, it depends only
on two consecutive points. For any γ ě 0, we can define the γ-Hölder norm of a set
∆ “ pti, xiq1ďiďk (in which the points are ordered t1 ă ¨ ¨ ¨ ă tk, with the convention
pt0, x0q “ p0, 0q)

(2.1) Hγp∆q :“ sup
1ďiďk

|xi ´ xi´1|

|ti ´ ti´1|
γ
.

Notice that this is not the γ-Hölder norm of the linear interpolation of the points, since
(2.1) only considers consecutive points: one can think of this quantity as a local γ-Hölder
norm. In particular, the case γ ą 1 is not trivial here, and the case γ “ 0 is also of interest.
Then, for some fixed A ą 0, we define a compatibility set

(2.2) HAγ :“
 

∆ Ă R` ˆ R ; ∆ directed, Hγp∆q ď A
(

.

We then consider the γ-Hölder Last Passage Percolation, abbreviated as Hγ-LPP, defined
as

(2.3) LpH
A
γ q

m pΛt,xq :“ sup
!

|∆| ; ∆ Ă Υm,∆ P HAγ
)

.

We prove the following result.

Theorem 2.1. There are constants c1, c2 (depending only on γ, during the course of the

proof one finds that c1 ď cp1` γq´1{2) such that for any t, x and B, for any 1 ď k ď m

P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď

´c1At
γm

xk1`γ

¯k
,(2.4)

P
´

LpH
A
γ q

m pΛt,xq ď k
¯

ď exp

"

c2k
´

1´ c2

´Atγ

xkγ
^ 1

¯m

k

¯

*

.(2.5)

As a consequence, there is some C ą 0 such that for any fixed t, x, γ, A, P-a.s. there is
some m0 such that

1

C
ď

LpH
A
γ q

m pΛt,xq

pAtγ{xq1{p1`γqm1{p1`γq
ď C for all m ě m0 .

We stress that the constants in (2.4)-(2.5) are uniform in the parameters m,A, t, x: the
results are still valid when considering the situation when A, t, x Ñ 8 as m Ñ 8, which
is useful for some applications. Note that we could define a point-to-point version of the
Hγ-LPP, by adding the condition that pt, 0q P ∆: a result analogous to Theorem 2.1 then
holds.

Note that we have that LpH
A
γ q

m “ LpH
A
γ q

m pΛt,xq is of order mκ, with κ “ 1{p1`γq. Then, it

is very natural to expect that LpH
A
γ q

m {mκ converges a.s. to a constant as mÑ8: we discuss
this convergence in Section 2.3, see in particular Remark 2.7. The value of the constant is
discussed in Appendix A.

Let us also discuss briefly about the (conjectured) transversal fluctuations of a maximal

path (that is a path collecting the maximal number of points). We already have that LpH
A
γ q

m

is of order mκ, with κ going to 1 as γ Ó 0. Then, the transversal fluctuations of a maximal
path should be of order m´ζ with ζ “ ζpγq decreasing as γ decreases, up to some point
where ζ reaches the value 0 (at which point a maximal path has transversal fluctuations of
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Figure 1. Simulation of Hγ-LPP with m “ 104 (t, x, A all set to 1). The plots represent a

maximizing path: from left to right, γ “ 1 (Lm “ 99 in the picture, m1{2
“ 100); γ “ 1{2

(Lm “ 510, m2{3
« 464); γ “ 1{4 (Lm “ 1722, m4{5

« 1585). We stress that the scale is different
in all three plots, and we see that the transversal fluctuations are much smaller than 1 in the
first case, and of order 1 in the second and third case.

order 1, see Figure 1 for an illustration). As discussed below (see in particular Section 3.3-

(b)), it is natural to conjecture that ζ “ p1´5κ{3q_0 “ γ´2{3
1`γ _0: transversal fluctuations

should be much smaller than 1 when γ ą 2{3 (κ ă 3{5) and of order 1 when γ ă 2{3
(κ ą 3{5).

Remark 2.2. One could naturally generalize Hölder LPP to a cone-shaped LPP: one can
define a region R “ tpt, xq P R` ˆ R, f2ptq ď x ď f1ptqu, with f1 ď f2 two functions
R` Ñ R, and let the compatibility condition for ∆ be that for any pti´1, xi´1q, pti, xiq P ∆
we have pti ´ ti´1, xi ´ xi´1q P R (i.e. the next point in ∆ has to be in the cone-shaped
region R from the previous point). In this framework, Hγ-LPP is simply the cone-shaped
LPP with R “ tpt, xq,´tγ ď x ď tγu, and one could easily adapt the proof of Theorem 2.1:
the key quantity is V puq “

şu
0 |f1´f2|pvqdv, the area of R close to the origin, and one finds

that Lm is of the order of V ´1p1{mq (recovering the m1{p1`γq in the Hölder case).

2.2. Global Entropy constraint. Another type of constraint that is natural to consider
is a global constraint: we talk about an entropy constraint, since it arises naturally when
considering random walk paths (the entropy being a measure of the non-likelihood of
a path). This is a generalization of the study initiated in [6], which was motivated by
applications to directed polymer in random heavy-tail environment and helped answer
Conjecture 1.7 in [12] —we refer to Section 4 for an overview of how E-LPP can be applied.
For any a ě b ě 0, a ą 0, we define the pa, bq-Entropy of a set ∆ “ pti, xiq1ďiďk (again, the
points are ordered t1 ă ¨ ¨ ¨ ă tk, and we use the convention pt0, x0q “ p0, 0q)

(2.6) Enta,bp∆q :“
k
ÿ

i“1

|xi ´ xi´1|
a

|ti ´ ti´1|
b
.

In particular, we will be interested in two special subcases. First, when b ą 0 and a “ b`1:
in that case, we can generalize the notion of entropy to continuous paths s : r0, ts Ñ R,

by Entbpsq “
şt
0 |s

1puq|bdu, corresponding to the Lb norm of s1 (it is related to the p1, bq-
Sobolev norm of s) and the entropy of a set ∆ corresponds to the entropy of the linear
interpolation of ∆. Second, when b “ 0: then the entropy can also be generalized to non-
necessarily continuous paths s : r0, ts Ñ R, by Entapsq “ sup

 
ř

i |sptiq ´ spti´1q|
a
(

, the
supremum being over all finite subdivisions t1 ă ¨ ¨ ¨ ă tk of r0, ts. This corresponds to the
“a-variation” norm of s (when a “ 1 this is the total variation, and when a “ 2 this is the
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quadratic variation). Note also that, considering b ą 0 and a “ b{γ in (2.6), we have that

´

Entb{γ,bp∆q
¯γ{b

“

´

k
ÿ

i“1

|xi ´ xi´1|
b{γ

|ti ´ ti´1|
b

¯γ{b
ÝÝÝÑ
bÑ8

sup
1ďiďk

|xi ´ xi´1|

|ti ´ ti´1|
γ
,

so that when bÑ8 we formally recover the γ-Hölder norm of ∆ (2.1).

Then, for some fixed B ą 0, we define a compatibility set

(2.7) EBa,b :“
!

∆ Ă R` ˆ R ; ∆ directed, Enta,bp∆q ď B
)

,

so that a set of points is compatible if it can be collected by a path with entropy smaller
than B. We then consider the Entropy constrained LPP, abbreviated as E-LPP, as

(2.8) L
pEBa,bq
m pΛt,xq :“ sup

!

|∆| ; ∆ Ă Υm,∆ P EBa,b
)

.

We prove the following result. (Again, we could define a point-to-point version of the E-
LPP, by adding the condition that pt, 0q P ∆: an analogous result would then hold for the
point-to-point E-LPP.)

Theorem 2.3. There are constants c3, c4 (depending only on a, b) such that for any t, x
and any B, for any 1 ď k ď m

P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď

´c3pBt
b{xaq1{am

kpa`b`1q{a

¯k
,(2.9)

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď exp

"

c4k
´

1´ c4

´

pBtb{xaq1{a

kpa`bq{a
^ 1

¯m

k

¯

*

.(2.10)

As a consequence, there is a constant C such that for any fixed t, x, a, b, B, P-a.s. there is
some m0 such that

1

C
ď

L
pEBa,bq
m pΛt,xq

pBtb{xaq1{pa`b`1qma{pa`b`1q
ď C for all m ě m0 .

Again, the constants are uniform in the different parameters (and explicit, see the proof
of Theorem 2.3), and this fact reveals to be very useful, in particular for the applications
developed in Section 4.1.

Figure 2. Simulation of E-LPP with m “ 104 (t, x,B all set to 1), via a simulated annealing
procedure (using a Glauber dynamic on paths, with transitions between paths differing by at
most 1 point). The plots represents a path which collects a number of points that approximate

Lm, with different parameters a, b: from left to right, a “ 2, b “ 1 (Lm “ 117, m1{2
“ 100),

a “ 4, b “ 1 (Lm “ 547, m2{3
« 464), a “ 1, b “ 0 (Lm “ 158, m1{2

“ 100), a “ 2, b “ 0

(Lm “ 712, m2{3
« 464). Again, we stress that the scale is different in all four plots – much

smaller than 1 in the first and third, and of order 1 in the second and forth.
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Also here, L
pEBa,bq
m “ L

pEBa,bq
m pΛt,xq is of order mκ with κ “ a{pa` b` 1q, and it is natural

to expect that L
pEBa,bq
m {mκ converges a.s. to a constant as m Ñ 8. This convergence is

discussed in Section 2.3, and the value of the constant in Appendix A. Notice that in the
case where a “ b` 1 (which is one of the most natural, since it arises from LDP of random
walks, see Remark 2.4), we find κ “ 1{2, exactly as in the case of a Lipschitz constraint.
In the case b “ 0, we find κ “ a{pa` 1q so κ “ 1{2 when a “ 1 (total variation case) and
κ “ 2{3 when a “ 2 (quadratic variation case). As far as the transversal fluctuations of
a maximal path are concerned, we argue in point (b) of Section 3.3 that it should be of

order m´ζ , with ζ “ p1´5κ{3q_0 “ b`1´2a{3
a`b`1 _0: transversal fluctuations should be much

smaller than 1 for κ ă 3{5, and reach order 1 for κ ą 3{5. See Figure 2 for an illustration.

Remark 2.4. Let us stress here that the entropy of a set ∆ as defined in (2.6) appears
naturally when considering large deviations for random walks: consider S a symmetric

random walk with unbounded jumps, with stretch exponential tail PpS1 “ xq
xÑ8
„ e´|x|

ν
,

for some ν ą 0 (one may consider that ν “ 8 includes the case of the usual simple random
walk). Then, when considering the probability that a point pn, xnq (with nÑ8, xn "

?
n)

is visited (or collected) by the simple random walk path, we realize that

(2.11) ´ log PpSn “ xnq
nÑ8
„

#

nIpxn{nq if ν ą 1, or ν P p0, 1q and xn ! n1{p2´νq ,

Jpxnq if ν P p0, 1q and xn " n1{p2´νq,

with some LDP rate functions Ip¨q, Jp¨q. More specifically, we have Ipxq „ x2{2 as x Ñ 0
(moderate deviation regime, see [10] for the standard Cramér case, [22] for the case ν P
p0, 1q), Ipxq “ xν as xÑ8 (super-large deviation, one-jump deviation, see [23, Thm. 2.1]),
and Jpxq “ xν (one-jump deviation, see [23, Thm. 2.1]). As such, the entropy defined in
(2.6) is the natural scaling limit of the log-probability that a random walk path visits a
given set of points. We chose the specific form (2.6) instead of using general LDP rate
functions Ip¨q, Jp¨q because: (i) we are able to perform computations with this formula, (ii)
we can usually bound the rate function c|x|a ď Ipxq ď c1|x|a for some a ą 0. In (2.11), we
therefore have: in the first part a “ 2, b “ 1 if xn{n Ñ 0 or a “ ν, b “ ν ´ 1 (ν ą 1) if
xn{n Ñ 8; in the second part, a “ ν, b “ 0. However we keep the parameters a, b in the
definition (2.6), to be able to deal with all these cases at once.

Remark 2.5. Let us stress here that we have a comparison between the Hölder and
Entropy LPP: indeed, we observe that for Λ Ă r0, ts ˆ R, we have HAγ Ă EBa,b with γ “

p1 ` bq{a and B “ Aat. This is due to the fact that for any ∆ “ tpti, xiqu1ďiďk with
Hγp∆q ď A, we get that, using γ “ p1` bq{a

Enta,bp∆q “
k
ÿ

i“1

|xi ´ xi´1|
a

|ti ´ ti´1|
b
ď

k
ÿ

i“1

Aa|ti ´ ti´1|
aγ´b ď Aat .

This gives that L
pEAata,b q

m pΛq ě L
pHA
p1`bq{a

q

m pΛq. On the other hand, it is not possible to get the
other bound simply by comparison between local and global constraints.

2.3. Poissonian (point-to-point) version of path-constrained LPP. Similarly to the
standard LPP, we can define a Poissonian (point-to-point) version of the path constrained
LPP, reproducing the idea of Hammersley [13] to prove the convergence of Lm{

?
m.

For any λ ą 0, let Υλ be a Poisson point process of intensity λ on R2, and we define
the point-to-point version of path constrained LPPs. Let us consider z “ px, yq P R2. For

a given set ∆ Ă Rˆp0, yq, we set ∆pzq “ ∆Ytzu so that it extends ∆ to make it end at z.
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In the directed case, for any t ą 0 we consider the domain Λt “ r0, ts ˆ R, and we
consider the end-point pt, tuq, for u P R. For any A ą 0, B ą 0, we define

LpH
A
γ q

Υλ
pt, tuq “ LpH

A
γ q

λ pt, tuq :“ sup
!

|∆|; ∆ Ă Υλ X Λt,∆ directed,Hγp∆
pt,tuqq ď A

)

,

L
pEBa,bq
Υλ

pt, ztq “ L
pEBa,bq
λ pt, tuq :“ sup

!

|∆|; ∆ Ă Υλ X Λt,∆ directed,Enta,bp∆
pt,tuqq ď Bt

)

.

Let us note that the entropy constraint grows linearly in t. We realize that in both cases,
`

LpCqλ pn, unq
˘

ně1
forms a super-additive ergodic sequence, in the sense that

(2.12) LpCqΥλ
pn` `, pn` `quq ě LpCqΥλ

pn, nuq ` LpCqθnuΥλ
p`, `uq ,

where θnu is the translation operator: pt, xq P θnuΥλ if and only if pt` n, x` unq P Υλ. The
super-additivity comes from the fact that the concatenation of two sets have: (i) a Hγ norm
equal to the maximum of the Hγ norms of the two sets; (ii) an entropy equal to the sum
of the entropies of the two sets. Therefore, Kingman’s sub-additive ergodic theorem [18]

implies the existence of the limit lim
tÑ8,tPN

1
tL
pCq
Υλ
pt, tuq. In the following result we extend this

limit to the continuous parameter t P R` and we show that it is finite.

Proposition 2.6. For any u P R and any λ ą 0, the limits

(2.13) CH
λ,Apuq “ lim

tÑ8

1

t
LpH

A
γ q

λ pt, tuq, CE
λ,Bpuq “ lim

tÑ8

1

t
L
pEBa,bq
λ pt, tuq

exist a.s. and in L1, and are finite, constant P-a.s.
Moreover the constants CH

λ,Apuq and CE
λ,Bpuq satisfy the following scaling relations

(2.14)

CH
λ,Apuq “ pλAq

1
1`γ CH

1,1

`

uλ
1´γ
1`γA

´ 2
1`γ

˘

; CE
λ,Bpuq “ pλB

1{aq
a

a`b`1 CE
1,1

`

uλ
a´b`1
a`b`1B´

2
a`b`1

˘

.

Proof. We start by proving (2.13). We have already noted that the super-additivity (2.12)
gives directly the result for the limit along the integers n Ñ 8. We can extend the limit

along the real line tÑ8, using that t ÞÑ LpCqλ pt, tuq is non-decreasing.
It remains to prove that the constants are finite. We show how this is a consequence of our

Theorems 2.1-2.3. Let us deal only with the Hölder case, and let us set A “ 1,λ “ 1 for sim-

plicity. Thanks to (2.16), we get that L1pt, tuq
pdq
“ Lt1`γ p1, t1´γuq, therefore to prove that the

constant in (2.13) is finite it suffices to show that lim supρÑ8 ρ
´1{p1`γqLρp1, ρp1´γq{p1`γquq ă

`8 a.s. For this purpose, removing the constraint we get that Lρp1, ρp1´γq{p1`γquq ď
LpH

A
γ q

Υρ
pΛ1,8q, where LpH

A
γ q

Υρ
pΛ1,8q is the Hγ-LPP in the domain Λ1,8 “ r0, 1sˆR with a set

Υρ which is a Poisson point process of intensity ρ, see Section 2.1. We cannot directly apply
Theorem 2.1 because Λ1,8 is not bounded and Υρ does not have a fixed number of points.

However, we can write LpH
A
γ q

Υρ
pΛ1,8q “ limjÑ8 L

pHA
γ q

Υρ
pΛ1,jq with Λ1,j “ r0, 1s ˆ r´j, js, so

that for any v ą 0

P
`

LpH
A
γ q

Υρ
pΛ1,8q ě vρ1{p1`γq

˘

“ lim
jÑ8

P
`

LpH
A
γ q

Υρ
pΛ1,jq ě vρ1{p1`γq

˘

.
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Then, we denote N
pρq
j :“ |ΥρXΛ1,j | the number of Poisson points in Λ1,j (Λ1,j has volume

2j). Then, using Theorem 2.1 (with m “ 4ρj), we can write

P
`

LpH
A
γ q

Υρ
pΛ1,jq ě vρ1{p1`γq

˘

ď P
`

N
pρq
j ě 4ρj

˘

` P
`

L4ρjpΛ1,jq ě vρ1{p1`γq
˘

(2.15)

ď P
`

N
pρq
j ě 4ρj

˘

`

´ 4c1

v1`γ

¯vρ1{p1`γq

.

The first probability goes to 0 as j Ñ 8 (N
pρq
j is a Poisson random variable of parameter

2ρj), so that choosing v0 “ p8c1q
1{p1`γq, we obtain that

P
`

LpH
A
γ q

Υρ
pΛ1,8q ě v0ρ

1{p1`γq
˘

ď 2´v0ρ
1{p1`γq

,

which concludes the argument.

To show the scaling relation (2.14), we consider two different scaling relations satisfied

by LpH
A
γ q

λ and L
pEBa,bq
λ . For this purpose, we start by considering the following maps:

(i) pt, xq ÞÑ pλ1{p1`γqt, λγ{p1`γqxq, which does not change the γ-Hölder norm of a set ∆;

(ii) pt, xq ÞÑ pλa{pa`b`1qt, λpb`1q{pa`b`1qxq, which multiplies the entropy of a set ∆ (and t)

by λa{pa`b`1q.
Therefore, since the image of Υλ through these maps has the distribution of Υ1, we obtain
the following identities in distribution

LpH
A
γ q

λ pt, tuq
pdq
“ LpH

A
γ q

1

`

λ1{p1`γqt, λγ{p1`γqtu
˘

and L
pEBa,bq
λ pt, tuq

pdq
“ L

pEBa,bq
1

`

λa{pa`b`1qt, λpb`1q{pa`b`1qtu
˘

.

(2.16)

As a consequence, by using (2.13), we also get the existence of the following limits, for any
fixed t ą 0 and u P R, A,B ą 0

lim
λÑ8

1

λ1{p1`γq
LpH

A
γ q

λ

`

t, tuλp1´γq{p1`γq
˘

“ tCH
1,Apuq;

lim
λÑ8

1

λa{pa`b`1q
L
pEBa,bq
λ

`

t, tuλpa´pb`1qq{pa`b`1q
˘

“ tCE
1,Bpuq .

(2.17)

Note that we recover the same order for Lλ as in Theorems 2.1-2.3. Note also that the
end-point has to be scaled with λ, except when γ “ 1 or a “ b` 1.

From (2.17) we directly obtain that

CH
λ,Apuq “ λ1{p1`γqCH

1,Apuλ
´p1´γq{p1`γqq ,

and CE
λ,Bpuq “ λa{pa`b`1qCE

1,Bpuλ
pb`1´aq{pa`b`1qq.

(2.18)

Applying another scaling, we can also reduce to the case where A “ 1, B “ 1. We
consider the following maps, that preserves the distribution of Υλ:

(i) pt, xq ÞÑ pA1{p1`γqt, A´1{p1`γqxq, which divides the γ-Hölder norm by A;

(ii) pt, xq ÞÑ pB1{pa`b`1qt, B´1{pa`b`1qxq, which multiplies the entropy byB´1ˆB1{pa`b`1q.
Then, we obtain that

LpH
A
γ q

λ pt, tuq
pdq
“ LpH

1
γq

λ

`

A1{p1`γqt, A´1{p1`γqtu
˘

and L
pEBa,bq
λ pt, tuq

pdq
“ L

pE1
a,bq

λ

`

B1{pa`b`1qt, B´1{pa`b`1qtu
˘

.
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As a consequence, we have that

CH
1,Apuq “ A1{p1`γqCH

1,1pu{A
2{p1`γqq,

and CE
1,Bpuq “ B1{pa`b`1qCE

1,1pu{B
2{pa`b`1qq,

(2.19)

so that (2.18) and (2.19) give (2.14). �

Remark 2.7. When considering t “ 1, u “ 0 with λ “ m, this corresponds to considering
the LPP problem for paths s : r0, 1s Ñ R in a Poisson point process of intensity m. In
principle, one could therefore use (2.17) (with λ “ m), together with a de-Poissonization
argument (cf. [13]), in order to prove the convergence for the point-to-point version of the
Hγ-LPP and E-LPP of Sections 2.1-2.2 to the constant on the r.h.s. of (2.17). We do not
pursue in this direction, since it would not bring any technical novelty or much insight on
the problem. We refer to Section 3.3-(a) for further discussion on the value of the constant.
Let us stress that the argument should fail (and the constants differ) when the transversal
fluctuations of the optimal path are of order 1 as discussed below Theorem 2.1: indeed,
restricting the paths to stay in a box r0, 1s ˆ r´1, 1s is then an important constraint.

2.4. Discrete version of the directed path constrained LPP. For the previous LPP
models, we were considering the case of a continuous domain Λ Ă R2, and a set of points Υ
that have a continuous distribution. Our idea is that these models can be thought as limits
of discrete models, where Λ is a lattice domain, and Υ is a set of point on this domain.
This is what is done in [6] in the directed random polymer context, where the E-LPP is
considered both in the discrete and in the continuous setting and where it is the main tool
to prove the convergence of the discrete model to a continuum limit —this was conjectured
in [12].

Here below we briefly develop the discrete LPP setting. We let n, h P N, and we consider
the (discrete) domain Λn,h “ J1, nKˆ J´h, hK. For 1 ď m ď CardpΛn,hq, we consider Υm a
set of m distinct points in Λn,h, chosen uniformly at random. Note that for ∆ Ă Λn,h, the
definition of Hγ-Hölder norm (2.1) and entropy (2.6) of the set ∆ still holds. We denote

L
pHA

γ q
m pΛn,hq and L

pEBa,bq
m pΛn,hq the discrete analogues of the H-LPP and E-LPP: we then

have results analogous to Theorems 2.1-2.3.

Theorem 2.8. For any n, h ě 1, and any 1 ď k ď m ď 2nh, we have that

P
´

L
pHA

γ q
m pΛn,hq ě k

¯

ď

´CAnγm

hk1`γ

¯k
, P

´

L
pHA

γ q
m pΛn,hq ď k

¯

ď eck
`

1´c
`

Anγ

hkγ
^1
˘

m
k

˘

;

P
´

L
pEBa,bq
m pΛn,hq ě k

¯

ď

´CB1{anb{am

hkpa`b`1q{a

¯k
, P

´

L
pEBa,bq
m pΛn,hq ď k

¯

ď e
ck
`

1´c
`

B1{anb{a

hkpa`bq{a
^1
˘

m
k

˘

.

We recover with this result that in the discrete setting: (i) L
pHA

γ q
m pΛn,hq is of order

pAnγ{hq1{p1`γqm1{p1`γq; (ii) L
pEBa,bq
m pΛn,hq is of order pBnb{haq1{pa`b`1qma{pa`b`1q. The proof

of Theorem 2.8 is identical to those of its continuous counterparts Theorems 2.1-2.3 (see
for instance the proof of [6, Theorem 3.1-(ii)]), and we leave it to the reader.

3. Non-directed LPP

Let us now develop the fact that the notion of compatibility allows for even more general
constraints, and for example enables us to deal with non-directed paths. To do so, we
consider a natural framework: we work with a time horizon r0, ts, and define the γ-Hölder
norm and the Entropy of a subset ∆ “ pxiq1ďiďk of R2 (the points are considered in a given
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order), by considering the optimal γ-Hölder norm or Entropy of a path going through the
points of ∆ (in the correct order) in a time horizon t:

Hγpt,∆q :“ inf

"

sup
1ďiďk

}xi ´ xi´1}

|ti ´ ti´1|
γ

; t1 ă ¨ ¨ ¨ ă tk subdivision of r0, ts

*

,(3.1)

Enta,bpt,∆q :“ inf

" k
ÿ

i“1

}xi ´ xi´1}
a

|ti ´ ti´1|
b

; t1 ă ¨ ¨ ¨ ă tk subdivision of r0, ts

*

,(3.2)

where } ¨ } denotes the Euclidean norm on R2. Another way of presenting it is by saying
that Hγpt,∆q (resp. Enta,bpt,∆q) is smaller than A if and only if there exists a path
s : r0, ts Ñ R2 collecting the points of ∆ which has γ-Hölder norm (resp. Entropy) smaller
than A.

Here again, the case b ą 0 with a “ b ` 1 will be of particular interest for us, since
it arises naturally from a LDP for non-directed random walks to visit a certain set of
points (i.e. considering the probability that there are some times t1 ă ¨ ¨ ¨ ă tk such that
Sti “ xi). It can be extended to continuous curves s : r0, ts Ñ R2, or more precisely, to

their traces % “ tspuq, u P r0, tsu, by taking the infimum of
şt
0 }s̃

1puq}adu over all possible

parametrization s̃ : r0, ts Ñ R2 of %. The case b “ 0 arises also when considering random
walks with increments with a stretch-exponential tail, and correspond to the a-variation
norm of a curve s : r0, ts Ñ R (which does not depend on the parametrization of the curve).

Let us notice right away that we are able to identify the optimal subdivision 0 ď t1 ă
¨ ¨ ¨ ă tk ď t used by a path to collect all points of ∆:

‚ For the Hölder case (3.1), we find that the optimal choice for the subdivision is

ti ´ ti´1 “ t}xi ´ xi´1}
1{γ

`
řk
i“1 }xi ´ xi´1}

1{γ
˘´1

(so that all terms in the sup are
equal). Then we obtain that the γ-Hölder norm of ∆ is

(3.3) Hγpt,∆q “
1

tγ

´

k
ÿ

i“1

}xi ´ xi´1}
1{γ

¯γ
.

We note that when γ “ 1, the definition (2.1) corresponds to the total length of the
linear interpolation of the points of ∆, and can therefore be extended to continuous

curves s : r0, ts Ñ R2, by
şt
0 }s

1puq}du, the total length of the curve. It does not
depend on the parametrization but only on the trace % “ tspuq, u P r0, tsu.

‚ For the Entropy case (3.2), we find that the optimal choice for the subdivision is

ti´ti´1 “ t}xi´xi´1}
a{pb`1q

`
řk
i“1 }xi´xi´1}

a{pb`1q
˘´1

– note that when a “ b`1,
ti ´ ti´1 is just proportional to the distance between the points. Then we obtain
that the Entropy of ∆ is

(3.4) Enta,bpt,∆q “
1

tb

´

k
ÿ

i“1

}xi ´ xi´1}
a{pb`1q

¯b`1
.

Note that when a “ b` 1, (3.4) corresponds to the pb` 1q-th power of the length
of the linear interpolation of the points of ∆.

Remark 3.1. In view of (3.3)-(3.4) (and the comments below), we see that the Hγ-LPP
and the E-LPP are equivalent. We indeed have Enta,bpt,∆q “ tHγpt,∆q

a with γ “ pb`1q{a,
or also Hγpt,∆q “ t´γEnta,bpt,∆q

γ with b “ 0 and a “ 1{γ. Hence, we will focus simply
on the non-directed E-LPP, since the Entropy and Hölder constraints are easily related to
each other.
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We will work with the domain Λr “ tx P R2, }x} ď ru, the disk of radius r (for symmetry
reasons, but this choice is not crucial). For m ě 1, Υm is a set of m independent variables
uniform in Λr. Then, for some fixed B ą 0, we define the non-directed Entropy compatible
sets with time horizon r0, ts,

E t,B
a,b “

 

∆ Ă R2 ; Enta,bpt,∆q ď B
(

,

and finally the non-directed LPP,

(3.5) L
pE t,Ba,b q
m pΛrq :“ sup

!

|∆| ; ∆ Ă Υm,∆ P E B
a,bptq

)

.

(We use a curly font for L and E to visually mark the difference with the directed LPPs.)
We prove the following result, for non-directed LPP.

Theorem 3.2. There exist constants c5, c6 such that for any t, r and B, for any 1 ď k ď m

P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď

´c5pBt
b{raq2{am

k2pb`1q{a

¯k
,(3.6)

P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď e´c6m ` exp

"

c6k
´

1´ c6
ma{2pb`1q

k

`

Btb{ra
˘1{pb`1q

¯

*

.(3.7)

Finally, there is some C ą 0 such that P-a.s. there is some m0 such that

(3.8)
1

C
ď

L
pE t,Ba,b q
m pΛrq

m^ pBtb{raq
1
b`1m

a
2pb`1q

ď C for all m ě m0 .

Also here, the constants in (3.6)-(3.7) are uniform in the parameters m,B, t, r, allowing
for a dependence of these parameters on m.

In view of Remark 3.1 above, we obtain an analogous statement for non-directed Hγ-LPP

(take b “ 0, a “ 1{γ, and B “ tA1{γ in Theorem 3.2). For instance, the last statement of
Theorem 3.2 can be read (with obvious notations) as

(3.9) P´ a.s. Dm0 ą 0:
1

C
ď

L
pH t,A

γ q
m pΛrq

pAtγ{rq1{γm1{p2γq
ď C for all m ě m0 .

Figure 3. Simulation of non-directed LPP with m “ 103 in r´0.5, 0.5s2 (t, B set to 1), via
a simulated annealing procedure (using a Glauber dynamic on paths, with transitions between
paths differing by at most one point). The plots represents a path which collects a number of
points that approximates Lm with different values for γ “ pb` 1q{a: on the left, γ “ 1 (Lm “ 53

in the picture, m1{2
« 32); γ “ 3{4 (Lm “ 128, m2{3

“ 100). Note that the scale is different in
the two plots – quite smaller than 1 in the first case, of order 1 in the second case.

We have that Lm is of order mκ with κ “ a
2pb`1q ^ 1 (or κ “ 1

2γ ^ 1), and it is also

natural to expect that Lm{m
κ converges a.s. to a constant as m Ñ 8. We highlight the
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fact that, in the non-directed case, we find that κ “ 1{2 (as for the standard LPP), both
for an entropy constraint with a “ b ` 1 (the standard case when considering entropy
arising from LDP of random walks) and for a Lipschitz constraint (γ “ 1, corresponding
to a length constraint, see discussion after (3.3)).

3.1. Poissonian version of the model. In the non-directed framework, we are also able
to define a Poissonian version of the model. For any z P R2 and any r ą 0, we will consider
sets ∆ and extend them to end at rz (we denote ∆przq this extension), in order to define
a point-to-point version (and use sub-additivity techniques). The main difference with the
directed case is that we need here to decide what is the time horizon tr to reach that point.
As further discussed below, the only reasonable choice is to pick tr “ r1{γ , resp. ra{pb`1q,
which is the time needed to reach rz with Hγ norm of order 1, resp. with entropy of order
tr. We will also see that the models present some interest only when γ “ 1 (the Hγ norm is
then just the length of the path) or when a “ b`1 (and the entropy derives from standard
LDP).

For any A ą 0, B ą 0, we define

L
pH A

γ q

Υλ
przq “ L

pH A
γ q

λ przq :“ sup
!

|∆|; ∆ Ă Υλ,Hγptr,∆
przqq ď A

)

,

L
pEBa,bq

Υλ
przq “ L

pEBa,bq

λ przq :“ sup
!

|∆|; ∆ Ă Υλ,Enta,bptr,∆
przqq ď Btr

)

.

Let us realize right away that the two models are equivalent (on the contrary to Section 3
where the dependence on t was different for the two models, cf. Remark 2.5): (i) from (3.3),

having Hγptr,∆q ď A is equivalent to
řk
i“1 }xi ´ xi´1}

1{γ ď A1{γtr; (ii) from (3.4), having

Enta,bptr,∆q ď Btr is equivalent to
řk
i“1 }xi´xi´1}

a{pb`1q ď B1{pb`1qtr. We therefore focus

only on the Entropy case – we set γ “ pb` 1q{a, and drop the super-script E B
a,b to ease the

notations.
In order for the sequence

`

Lλpnzq
˘

ně1
to be super-additive ergodic (i.e. verify (2.12)),

we need to have γ ď 1 so that tr ` ts ď tr`s for any r, s P R` (using that ptr ` tsq
γ ď

tγr ` tγs for γ ď 1). Indeed, super-additivity simply comes from the above remark that

Enta,bptr`s,∆q ď Btr is equivalent to
řk
i“1 }xi ´ xi´1}

1{γ ď B1{pb`1qtr`s, together with
tr ` ts ď tr`s. This gives, as for (2.13), the following convergence (a.s. and in L1),

(3.10) Cλ,Bpzq “ lim
rÑ8

1

r
Lλprzq .

Note that by symmetry, the constant Cλ,Bpzq depends only on }z}.
Additionally, Lλprzq verifies some scaling relations. Note that here, in view of the defi-

nition (3.4), we need to scale both coordinates in the same way: we use the map x ÞÑ λ1{2x,

which preserves the condition Enta,bptr,∆
prqq ď Btr thanks to our choice of tr “ r1{γ –

this is crucial here, and is the main reason for our choice of time horizon. The image of Υλ

though this map has the distribution of Υ1, so we obtain that

Lλprzq
pdq
“ L1

`

λ1{2rz
˘

.

As a consequence of this scaling relation and (3.10), for any r ą 0, we have the convergence

(3.11) lim
λÑ8

1

λ1{2
Lλprzq “ rC1,Bpzq .

Note that we recover the correct order for Lλ only when a “ b ` 1 or γ “ 1 cf. (3.8)
and (3.9), (in which case the time horizon is tr “ r), but not in other cases. This is due
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to the constraint that rz has to be visited in the time horizon tr “ r1{γ : when γ ă 1,
it somehow stretches the paths, which cannot wander as much as in the “free” case. An
idea to overcome this problem would be to consider the “free end-point” version of this
non-directed Poisson LPP in some time horizon t – however preventing from the use of
super-additivity. Then, the natural question would be to determine the typical end-to-end
distance.

3.2. Discrete version. Here again, we can define a discrete version of the model (we do
it only in the entropy case), by considering the discrete domain Λd “ tx P Z2, }x} ď du.
Then, for m ď CardpΛdq we consider Υm a set of m distinct points of Λd, chosen uniformly
at random. Here we consider a discrete time horizon n, and we slightly modify the definition
of the entropy of a set ∆ Ă Λd compared to (3.2), to fit the discrete setting:

(3.12) Enta,bpn,∆q :“ inf
!

k
ÿ

i“1

}xi ´ xi´1}
a

|ni ´ ni´1|
b

; n1 ă ¨ ¨ ¨ ă nk subdivision of J1, nK
)

.

Then, we define L
pE n,Ba,b q

m pΛdq the corresponding non-directed E-LPP, and have a result
analogous to Theorem 3.2 (we display here only the analogous of (3.6)).

Theorem 3.3. We have a constant such that for any n, d, and any 1 ď k ď m ď |Λd|,

P
´

L
pE n,Ba,b q

m pΛdq ě k
¯

ď

´CpBnb{r2q1{am

k2pb`1q{a

¯k
.

The proof of Theorem 3.3 is identical to those of its continuous counterparts Theorem 3.2,
and we leave it to the reader.

3.3. Open questions and directions. Our main goal here has been to introduce a gen-
eralized Last Passage Percolation, and the results we present here give the first properties
of such models, which are already useful in some contexts, see the two potential applica-
tions we develop in Section 4 below. However, many questions are raised, and we provide
here a few important open problems that remain – some of them seem out of reach for the
moment.

(a) Show the convergence of the LPP. We have shown that the Hγ-LPP, E-LPP or non-
directed LPP, generically denoted Lm, are of order mκ for some κ ą 0. What we did not
prove but strongly believe is that Lm{mκ converges (a.s. and in L1) to a constant C as
m Ñ 8 (cf. Remark 2.7). The next step would then be to identify this constant, or the
constant C1,1p0q “ limtÑ8

1
tLpt, 0q in the Poissonian setting (cf. (2.13)), and its dependence

on the parameters of the model (in particular in γ or a, b, since the dependence in t, A,B can
be derived thanks to scaling arguments, see Proposition 2.6, (2.14)). In Appendix A.1, we
present some simulations for the directed Hγ-LPP in Poissonian environment of Section 2.3
(with A and λ set to 1), and we display a graph of the constant C1,1p0q as a function of γ,
see Figure 6. Another natural question is also to determine the dependence in the end-point
of the constants C1,1puq appearing in (2.13).

In Appendix A.2 we present some simulations for the directed E-LPP, which do not
allow us to make some convincing predictions.

(b) Once the constant C1,1p0q “ limtÑ8
1
tLpt, 0q has been determined, the next natural

step is to identify the fluctuations of Lpt, 0q around t C1,1p0q. The question is to know
whether there is an analogue of Theorem 1.1 to the generalized LPP. As far as the directed
setting is concerned, simulations presented in Appendix A suggest that the model is still
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in the KPZ universality class. It is reasonable to believe that in the Poisson setting of
Section 2.3 (setting λ “ 1, A or B equal to 1, and u “ 0) the convergence in (2.13) should
generalize to the following convergence in distribution

(3.13)
L1pt, 0q ´ t C1,1p0q

t1{3
pdq
ÝÑ FGUE .

(The dependence on γ or on a, b is hidden in the constant C1,1p0q and possibly in the
normalization of FGUE .) According to Remark 1.2, it is also natural to expect that the

typical transversal fluctuations of a maximal path should be of order t2{3.
Applying the map pt, xq ÞÑ pm´κt,mκ´1xq as done in Section 2.3 (with κ “ 1{p1 ` γq

or κ “ a{pa ` b ` 1q), which preserve the constraints but multiplies the intensity of the
Poisson point process by m, the convergence in (3.13) above (with t “ mκ) transforms to

(3.14)
Lmp1, 0q ´ C1,1p0qm

κ

mκ{3

pdq
ÝÑ FGUE .

As far as the transversal fluctuations of a maximal path are concerned, the transformation
above suggest that they are of order mκ´1 ˆ pmκq2{3 “ m5κ{3´1.

When we consider the directed Hγ-LPP or E-LPP of Sections 2.1-2.2, in which we draw
m points uniformly in a domain Λt,x rather than a Poisson point process of intensity
m{p2txq (recall |Λt,x| “ 2tx), the relation above tells us that the transversal fluctuations

of a maximal path should be of order m´ζ with ζ “ p1 ´ 5κ{3q _ 0. In the case κ ą
3{5 the path is “blocked” by the border of the domain Λt,x, and oscillates much more
inside the domain. This should make the constant C “ limmÑ8 Lm{mκ different than the
corresponding C1,1p0q “ limtÑ8

1
tLpt, 0q in that case.

(c) As far as the non-directed setting is concerned, the above discussion is even more far-
reaching: because of its “directedness”, the point-to-point Poissonian version seems useless
here to prove that the limit C “ limnÑ8Lm{m

κ (with κ “ a
2pb`1q or κ “ 1

2γ ) exists, even

if we believe it does exist. We did not perform simulations to test the value of C and its
dependence on the parameters a, b or γ, because of the high computation time even for a
small number of points m. It is still reasonable to believe that the model is also in the KPZ
universality class, that is m´κ{3pLm ´ Cmκq converges in distribution to FGUE , and that
typical transversal fluctuations for the model are of order m´ζ with ζ “ p1´ 5κ{3q _ 0.

4. Some applications of the (entropy) path-constrained LPP

We now present two applications of the directed and non-directed LPPs, to the context
of polymer models.

4.1. Application I: a model for a directed polymer in Poissonian environment.
We define here a very natural variational problem, which encapsulate the energy-entropy
competition inherent to models of polymers in random environment. The random envi-
ronment is given by a Poisson point process Υλ on R` ˆ R of intensity λ ą 0 (its law is
denoted P), and for β ą 0, we define the following (point to point) variational problem

(4.1) Zλ,βptq :“ sup
s:r0,tsÑR,sp0q“sptq“0

!

β
ˇ

ˇsXΥλ

ˇ

ˇ´ Entpsq
)

,

with Entpsq defined as in (2.6) – because Υλ is countable, Entpsq is well-defined. Here,
|sXΥλ| the number of points collected by the path, is viewed as a measure of the energy
of a trajectory s, so this variational problem constitute a simplified model to study the
energy-entropy competition of polymer models. Again, the central cases that we have in
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mind is when a “ b`1 or b “ 0 in the definition of the entropy (2.6), see Remark 2.4 (when
the entropy derives from the LDP of a simple random walk, we have a “ 2, b “ 1). The idea
of this model is similar to that of [9] which considers a Brownian polymer in Poissonian
medium. However, here, we somehow consider only the ground states, that is trajectories
maximizing the energy-entropy balance, and we also allow for more general entropy than
that of the Brownian motion (for which a “ 2, b “ 1).

Let us stress that the variational problem (4.1) has already appeared in [3] (in the case
a “ 2, b “ 1) as a solution for a Hamilton-Jacobi equation used to study the stationary
solutions of a Burgers equation (with a forcing induced by the points of a Poisson Point
Process). It has also proven to be useful for the study of the thermodynamic limit for
directed polymers, see [4].

First of all, we notice that as in Section 2.3, Zλ,βptq is a super-additive ergodic sequence
– the entropy of the concatenation of two paths is the sum of the entropies of the two
paths –, so that Kingman’s sub-additive ergodic theorem gives that the limit

(4.2) fpλ, βq :“ lim
tÑ8

1

t
Zλ,βptq

exists a.s. and in L1, and is P-a.s. constant. The fact that there exists a constant c such that
P a.s. lim sup 1

tZλ,βptq ď c (so that the constant fpλ, βq is finite) derives from our estimates
in Theorem 2.3: the scheme of proof is identical to that of Proposition 4.1 below (together
with the argument in Section 2.3, see (2.15)), so we skip it – we mention that this fact was
an important part of the study in [3]. We also have scaling relations for Zλ,βptq. Indeed,

consider the two following maps: (i) pt, xq ÞÑ pλ´a{pa`bqt, λ´b{pa`bqxq whose image of Υλ

has distribution Υ1 and which preserves the entropy; (ii) pt, xq ÞÑ pβ´1{pa`bqt, β1{pa`bqxq,
which multiplies the entropy by β, while preserving the distribution of Υλ. We therefore
obtain that

(4.3) Zλ,βptq
pdq
“ Z1,β

`

λ´a{pa`bqt
˘

and Zλ,βptq
pdq
“ βZλ,1

`

β´1{pa`bqt
˘

.

A first consequence is that we get that fpλ, βq “ pβa`b`1λaq1{pa`bqfp1, 1q, where fp1, 1q is
a constant that needs to be determined. Another consequence is that, if we consider the
alternative problem where we take λ Ñ 8 (instead of t Ñ 8), we get that, for any fixed
positive t, β, the limit

(4.4) lim
λÑ`8

1

λa{pa`bq
Zλ,βptq “ tfp1, βq “ tβpa`b`1q{pa`bqfp1, 1q

exists a.s. and in L1.

We considered the Poissonian point-to-point version for the sake of simplicity (in partic-
ular to be able to use scaling relations), but one could naturally define a “m-points” version
of the model. More precisely, considering the domain Λ1,1 “ r0, 1sˆr´1, 1s, and Υm a set of
m points taken uniformly and independently in Λ1,1, we can define the variational problem,
for β ą 0

(4.5) Zm,β :“ sup
s:r0,1sÑr´1,1s

!

β|sXΥm| ´ Entpsq
)

.

Then, in view of (4.4), we expect that a “de-Poissonization” technique would enable us
to show that there is a constant Cst ą 0 such that

(4.6) lim
mÑ8

1

ma{pa`bq
Zm,β “ βpa`b`1q{pa`bqCst .
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(Since Λ1,1 has volume 2, we have an intensity of points λ “ m{2, so we expect that

Cst “ 2a{pa`bqfp1, 1q.) In the most standard case a “ 2, b “ 1 (deriving from LDP of
the simple random walk), we therefore find that the variational problem Zm,β is of order

β4{3m2{3 – this is much larger than
?
m which is the order when we consider the case of a

uniformly bounded entropy.
We stress that one can easily find the correct order for Zm,β thanks to the results of

Section 2.2. Indeed, we can write from (4.5) that

(4.7) Zm,β “ sup
Bě0

!

β sup
s:r0,1sÑR,Entpsq“B

 

|sXΥm|
(

´B
)

.

Then, since in Theorem 2.3 it is proven that

sup
s,EntpsqďB

 

|sXΥm|
(

— B1{pa`b`1qma{pa`b`1q ^m,

one readily sees that the maximum in (4.7) is attained for (and is of the order of) B —

pβa`b`1maq1{pa`bq ^ pβmq.
We can actually make this precise, and prove deviation bounds for Zm,β.

Proposition 4.1. There are constants c7, c8, and some K0 (depending only on a, b) such

that for any K ą K0, and provided that m is large enough so that pβmaq1{pa`bq ď m, we
have

P
´

Zm,β ě Kpβa`b`1maq1{pa`bq
¯

ď e´c7Kpβm
aq1{pa`bq ,(4.8)

P
´

Zm,β ď
1

K
pβa`b`1maq1{pa`bq

¯

ď e´c8K
b{apβmaq1{pa`bq(4.9)

As a consequence, there is some C ą 0 such that for any fixed β ą 0, P-a.s. there is some
m0 such that

1

C
ď

Zm,β

pβa`b`1maq1{pa`bq ^ pβmq
ď C , for all m ě m0 .

Perspectives. For this model, some important questions remain unanswered:
(i) what is the value of the constant Cst (or equivalently of the constant fp1, 1q)? In

view of (4.7), and since we believe that supEntpsqďBt|s X Υm|u „ B1{pa`b`1qCmκ with

κ “ 1{pa` b` 1q and C (we used the scaling of relation (2.14) that should hold also in the

non-Poissonian case, that is, CB “ B1{pa`b`1qC), we conjecture that the supremum in (4.7)
is equal to

ca,bpβCm
κqpa`b`1q{pa`bq, where ca,b “ pa` bqpa` b` 1q´pa`b`1q{pa`bq

(the supremum is attained for B “ pβCmκ{pa` b` 1qqpa`b`1q{pa`bq). Since the simulations
of Appendix A suggest that the constant C is equal to 1, we can therefore conjecture that

lim
mÑ8

Zm,β

pβa`b`1maq1{pa`bq
“ ca,b .

(ii) what does the maximizer of Zλ,βptq (or Zm,β) look like? for example what is its
typical transversal fluctuation exponent? We mention that in [3, 4], the results are mostly
qualitative, such as the existence and coalescence of semi-infinite maximizers for this model.

We believe that this model deserves further investigation, and would lead to a better under-
standing of the energy-entropy balance in polymer models, and improve our understanding
of the Burgers equation with stationary forcing.
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Proof of Proposition 4.1. The proof is a relatively simple application of Theorem 2.3, and
makes use of the fact that the estimates (2.9)-(2.10) are uniform in the parameters.

• For the upper bound, we use the idea sketched above: for any v ą 0, we decompose
the variational problem by writing

Zm,β ď
`

β sup
s,EntpsqPr0,vs

 

|sXΥm|
(˘

_ sup
kě1

`

β sup
s,EntpsqPr2k´1v,2kvs

 

|sXΥm|
(

´ 2k´1v
˘

.

Hence, a union bound gives that

P
`

Zm,β ě v
˘

ď P
´

sup
Entpsqďv

 

|sXΥm|
(

ě v{β
¯

`

8
ÿ

k“1

P
´

sup
Entpsqď2kv

 

|sXΥm|
(

ě 2k´1v{β
¯

.

Since supEntpsqď2kv

 

|sXΥm|
(

ď L
pE2kv
a,b q

m , we use Theorem 2.3-(2.9) with v “ Kpβa`b`1maq1{pa`bq,
and we obtain that provided that K is large enough,

P
`

Zm,β ě Kpβa`b`1maq1{pa`bq
˘

ď

´

c3K
´pa`bq{a

¯´Kpβmaq1{pa`bq

`

8
ÿ

k“1

´

cp2kKq´pa`bq{a
¯´2kKpβmaq1{pa`bq

ď c exp
´

´Kpβmaq1{pa`bq
¯

.

• For the lower bound, this is easier: for any v ą 0, we have that

Zm,β ě β sup
s,Entpsqďv

 

|sXΥm|
(

´ v .

With v :“ p2Kq´1pβa`b`1maq1{pa`bq, we obtain that

P
´

Zm,β ď
1

K
pβa`b`1maq1{pa`bq

¯

ď P
´

sup
s,Entpsqďv

 

|sXΥm|
(

ď v{β
¯

ď exp
´

´ cK´1pβmaq1{pa`bq ˆKpa`bq{a
¯

,

where the last inequality comes from Theorem 2.3-(2.10), provided that K is large enough.

The almost sure statement holds thanks to the previous bounds, by an easy application
of Borel-Cantelli lemma.

4.2. Application II: (continuous) non-directed polymers in heavy-tail environ-
ment. The directed E-LPP have already proved to be useful to understand the transversal
fluctuations and scaling limits of directed polymers in heavy-tail random environment, see
[6]. The continuous limit of the model is found to be an energy-entropy variational problem,
and E-LPP appears central to ascertain its well-posedness. Here, we define an analogous
variational problem in the non-directed setting, and show that it is well defined. It should
also appear as the scaling limit of some non-directed polymer model in heavy-tail random
environment – that we plan on studying more thoroughly.

As a continuum disorder field, we let P :“ tpwi, xi, yiq : i ě 1u be a Poisson Point
Process on r0,8qˆR2, of intensity µpdwdxdyq “ α

2w
´α´11twą0udwdxdy – it derives from

the scaling of a discrete field of disorder with heavy-tail distribution. For a continuous path
s : r0, 1s Ñ R2, we can then define the continuum energy it collects by summing the weights
in P “collected” by s (that is sitting on the trace of s), πpsq “

ř

pxi,yiqPs
wi. We can also

define its length `psq “
ş1
0 }s

1puq}du, and we consider `psqν for some ν ą 1 as a measure
of its entropy. Indeed, if s is a linear interpolation of a finite number of points in P, then
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`psqν is nothing but the non-directed E-LPP defined in (3.4) with a “ b` 1 and b` 1 “ ν.
This choice derives from LDP for a random walk, and ν “ 2 corresponds to the moderate
deviation regime of the simple random walk.

Thanks to the non-directed LPP of Section 3, we are able to show that the energy/entropy
variational problem is well defined, when α P p2{ν, 2q.

Proposition 4.2. For any ν ą 1, the following variational problem is well defined for all
β ě 0, when α P p2{ν, 2q,

(4.10) T pνqβ :“ sup
s:r0,1sÑR2

sp0q“0, `psqă8

 

βπpsq ´ `psqν
(

.

For β ą 0, we have that T pνqβ ą 0 a.s. and ErpT pνqβ qκs ă 8 for any κ ă α´ 2{ν. Moreover,

for any α P p2{ν, 2q, we have the scaling relation

(4.11) T pνqβ

pdq
“ β

να
να´2 T pνq1 .

On the other hand, if α P p0, 2{νs, we have that T pνqβ “ `8 a.s.

Up to now, polymers in random environment have mostly been considered in the directed
framework, see [8] for a thorough review, or in the semi-directed context of stretched poly-
mers, see [15, 29], or [16] for a review. Proposition 4.2 therefore shows that our generalized
LPP can be useful to study non-directed polymers: the variational problem can be thought
as an energy/entropy model for a continuous polymer in continuous random environment.
The main question remaining is then to describe what a maximizer of (4.10) look like.

Perspectives. The most natural question is now to consider a (discrete) non-directed poly-
mer model in random environment (the Hamiltonian being the sum of the weights of the
sites visited by the random walk), and prove its convergence to the variational problem
of Proposition 4.2, in the case of a heavy-tail environment. More generally, the study of
non-directed polymers in random environment is of great interest, and should be pursued.

Proof of Proposition 4.2. The proof is inspired by that in [6, Section 4]. We fix ν ą 1 in

the following, so we drop it from the notation T pνqβ “: Tβ.

˚ Scaling relations. For α P p0, 2q and ρ ą 0 we consider ϕρpw, xq :“ pρ2{αw, ρxq which

scales space by ρ and weights by ρ2{α respectively. For the Poisson point process P defined

in Section 4.2, we get that for any ρ ą 0, ϕρpPq
pdq
“ P. Then, applying this scaling with

ρ “ β´α{pνα´2q (if α ‰ 2{ν) we obtain the following scaling relation for any β ą 0

Tβ “ β
να
να´2 sup

s, `psqă8

!

β´2{pνα´2qπpsq ´
`

β´α{pνα´2q`psq
˘ν
)

pdq
“ β

να
να´2T1 .(4.12)

˚ Positivity. We show that for any β ą 0, Tβ ą 0. Moreover we show that a.s. Tβ “ `8
if α P p0, 2{νs. For any u ą 0, let us consider Du :“ r0,8q ˆ r´u, us2. We have

Tβ ě max
pw,x,yqPPXDu

 

β w
(

´ p
?

2uqν .

We observe that, by considering the ordered statistics of PXDu (see the proof of Lemma 4.3
below), we get that

max
pw,x,yqPPXDu

 

w
( pdq
“ p2uq2{αX with X

pdq
“ Expp1q´1{α.
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Then, with c “ β´1p2qν{2´2{α, we obtain that

P
´

Tβ ą 0
¯

ě lim
uÑ0

P
´

X ě cuν´2{α
¯

“ 1, whenα ą 2{ν ,

P
´

Tβ “ `8
¯

ě lim
uÑ8

P
´

X ě cuν´2{α
¯

“ 1, whenα ă 2{ν .

For the case α “ 2{ν we consider the set Gu :“ rβ´1p4
?

2uq2{α,8qˆ ru, 2uq2. As before we
have that, on the event P X Gu ‰ H,

(4.13) Tβ ě max
pw,x,yqPPXGu

 

β w
(

´ p2
?

2uqν ě p4
?

2uq2{α ´ p2
?

2uqν “ p2
?

2uq2{α .

Since ϕ1{upPq
pdq
“ P we have that PpP X Gu ‰ Hq ě c ą 0, with c independent of u.

Therefore, since the events ptPXG2k ‰ HuqkPN are independent, the Borel-Cantelli lemma
gives that infinitely many of them occur with probability 1, and (4.13) leads to conclude
that a.s. Tβ “ `8.
˚ Finite moments. We define, for any interval rc, dq, the variational problem restricted

to paths of length `psq P rc, dq:

(4.14) T
`

rc, dq
˘

:“ sup
s, `psqPrc,dq

 

βπpsq ´ `psqν
(

.

Then, we can write that Tβ “ Tβpr0, 1qq _ supkě0 Tβpr2k, 2k`1qq, and observe that scaling

space by 2´pk`1q we obtain that

Tβ
`

r2k, 2k`1q
˘ pdq
“ sup

s, `psqPr1{2,1q

!

2pk`1q2{απpsqβ ´ 2pk`1qν`psqν
)

ď 2pk`1q2{αβ sup
s, `psqď1

πpsq ´ 2kν .

Below, we show the following lemma.

Lemma 4.3. For any α ą 1{2, and any υ ă α, there is a constant cυ such that for any
t ą 1 we have

(4.15) P
´

sup
s, `psqď1

πpsq ą t
¯

ď cυt
´υ .

Hence, for α ą 1{2 and υ ă α, for any t ą 1^ β, we get by a union bound that

P
`

Tβ ą t
˘

ď P
`

Tβpr0, 1qq ą t
˘

`

`8
ÿ

k“0

P
`

Tβpr2k, 2k`1qq ą t
˘

ď P
`

sup
s, `psqď1

πpsq ą t{β
˘

`

`8
ÿ

k“0

P
´

sup
s, `psqď1

πpsq ą β´12´pk`1q2{αpt` 2kνq
¯

ď cυβ
υt´υ ` cυβ

υ
`8
ÿ

k“0

22kυ{αpt` 2kνq´υ ď c1υβ
υtυ

`

2
αν
´1
˘

.

The last inequality holds by separating the terms 2kν ă t (k ď 1
ν log2 t) and 2kν ě t

(k ď 1
ν log2 t) in the last sum. Since υ can be arbitrarily close to α, for any κ ă α´ 2{ν we

have that there exists a constant cκ “ cκpβq such that for any t ě 1

(4.16) P
`

Tβ ą t
˘

ď cκt
´κ .

This concludes the proof that ErpTβqκs ă 8 for any κ ă α ´ 2{ν, and it only remains to
prove Lemma 4.3.
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Proof of Lemma 4.3. Since we consider the optimization problem with length smaller than 1,
we can restrict the Poisson point process P to the disk D1 “ tx P R2, }x} ď 1u. We can
then rewrite a realization of P using its ordered statistic P “ pMi, Xiqiě1, where Mi

is the i-th largest weight, and Xi its position. The distribution of pMi, Xiqiě1 can be
given as follows: pMiqiě1 and pXiqiě1 are independent, Xi are i.i.d. uniform in D1, and

Mi “ π1{αpE1 ` ¨ ¨ ¨ ` Eiq
´1{α, where pEiqiě1 are i.i.d. Expp1q random variables.

Then, we have that πpsq “
ř8
i“1Mi1tXiPsu, and using that Mi is non-decreasing, we get

that

(4.17) πpsq “
8
ÿ

j“0

2j`1
ÿ

i“2j

Mi1tXiPsu ď

8
ÿ

j“0

M2jL2j`1 ,

where Lm is the non-directed LPP defined in (3.5), with set of points Υm :“ tX1, . . . , Xmu

(with r “ 1, t “ 1, b “ 0, a “ 1, B “ 1). Now, we will use that Li is of order
?
i and Mi of

order i´1{α. Since α ă 2, we can fix some δ ą 0 (small) such that 1{α ´ 1{2 ą 2δ, and by
a union bound, we get that

P
`

sup
s, `psqď1

πpsq ą t
˘

ď

8
ÿ

j“0

P
´

M2jL2j`1 ą cδ tp2
jq1{2´1{α`2δ

¯

(4.18)

where cδ “ p
ř

jě0p2
jq1{2´1{α`2δq´1.

Then, we use Theorem 3.2-(3.6) to get that there is a constant c0, independent of C,
such that

(4.19) P
`

L2j`1 ą C log tp2jq1{2`δ
˘

ď e´c0C log tp2jqδ ď t´c0Cp2
jqδ .

On the other hand, we also have that i1{αMi “ π1{α
`

pE1 ` ¨ ¨ ¨ ` Eiq{i
˘´1{α

, so that

Erpi1{αMiq
p1´δqαs is bounded by a constant that depends only on δ. Markov’s inequality

then gives that for any C 1

(4.20) P
´

M2j ą C 1
t

log t
p2jq´1{α`δ

¯

ď
c

C 1p1´δqα
plog tqp1´δqαt´p1´δqαp2jq´δp1´δqα .

Combining (4.19)-(4.20), we get that

P
´

M2jL2j`1 ącδ tp2
jq1{2´1{α`2δ

¯

ď P
´

L2j`1 ą C log tp2jq1{2`δ
¯

` P
´

M2j ą
cδ
C

t

log t
p2jq´1{α`δ

¯

ď t´c0Cp2
jqδ ` c2δt

´p1´2δqαp2jq´δp1´δqδ ,

so that summing over j in (4.18), we get that

P
´

sup
s, `psqď1

πpsq ą t
¯

ď t´c
1
0C ` c1δt

´p1´2δqα ď 2c1δt
´p1´2δqα .

The last inequality holds provided that C has been fixed large enough. This concludes the
proof, since δ is arbitrary. �

5. Proofs of the path-constrained LPP bounds

We prove here Theorems 2.1-2.3-3.2. The almost sure statements are straightforward
applications of the first parts of the theorems (via the Borel-Cantelli lemma), so we skip
their proof. The ideas are similar to those developed in [6, Part 1], in a special case of the
E-LPP.
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5.1. Hölder-constrained LPP. We prove first (2.4), and then (2.5).

Upper bound. Define Hkpt, Aq the set of k (ordered) elements up to time-horizon t that
have a γ-Hölder norm bounded by A:

Hkpt, Aq “
!

pti, xiq1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă t,Hγ

`

pti, xiq1ďiďk
˘

ď A
)

.

Then, we are able to compute exactly the volume of Hkpt, Aq.

Lemma 5.1. For any t ą 0 and A ą 0, we have for any k ě 1

Vol
`

Hkpt, Aq
˘

“ p2Aqk
Γp1` γqk

Γ
`

kp1` γq ` 1
˘ tkp1`γq.

In particular, it gives that there exists some constant C “ Cγ ď cp1` γq´1{2 such that

VolpHkpt, Aqq ď
´CAt1`γ

k1`γ

¯k
.

Proof. The key to the computation is the induction formula below, based on the decompo-
sition over the left-most point in Hkpt, Aq at position pu, yq (by symmetry we can assume
y ě 0): it leaves k ´ 1 points with remaining time horizon t´ u:

Vol
`

Hkpt, Aq
˘

“ 2

ż t

u“0

ż Auγ

y“0
Vol

`

Hk´1pt´ u,Aq
˘

dydu “ 2A

ż t

0
uγVol

`

Hk´1pt´ u,Aq
˘

du.

We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation.

For k “ 1, the computation is easy:

VolpH1pt, Bqq “ 2

ż t

u“0

ż Auγ

y“0
dudy “ 2A

ż t

0
uγdu “

2A

1` γ
t1`γ .

For k ě 2, by induction, we have

Vol
`

Hkpt, Aq
˘

“ p2Aqk
Γp1` γqk´1

Γ
`

pk ´ 1qp1` γq ` 1
˘ ˆ

ż t

u“0
uγpt´ uqpk´1qp1`γqdu.

Then, by a change of variable w “ u{t, we get
ż t

u“0
uγpt´ uqpk´1qp1`γqdu “ tpk´1qp1`γq`γ`1

ż 1

0
wγp1´ wqpk´1qp1`γqdw

“ tkp1`γq
Γ
`

γ ` 1
˘

Γ
`

pk ´ 1qp1` γq ` 1
˘

Γ
`

kp1` γq ` 1
˘ ,

and this completes the induction.

For the inequality in the second part of the lemma, we use Stirling’s formula to get that
for any α ą 0, as k Ñ 8 we have Γ

`

kα ` 1
˘

„
?

2παkpkα{eqkα. Hence, with the formula
for VolpHkpt, Aqq, we end up with the bound

(5.1) VolpHkpt, Aqq ď
c

a

kp1` γq

ˆ

2AΓp1` γqt1`γ
`

p1` γq{e
˘1`γ

k1`γ

˙k

ď

ˆ

c1At1`γ

p1` γq1{2k1`γ

˙k

,

where we used that Γp1` γq „
?

2πγpγ{eqγ as γ Ñ8 for the last inequality. �
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We then use this Lemma to control the probability that LpH
A
γ q

m pΛt,xq is larger than some k:

(5.2) P
´

LpH
A
γ q

m pΛt,xq ě k
¯

“ PpNk ě 1q ď ErNks,

where Nk “ Cardt∆ Ă Υm ; ∆ P HAγ u is the number of sets of k points in Υm that are

HAγ -compatible. Since all the points of Υm “ tZ1, . . . , Zmu are exchangeable, we have

ErNks “
ˆ

m

k

˙

P
´

D σ P Sk s.t. pZσp1q, . . . , Zσpkqq P Hkpt, Aq
¯

.

Since the pZiq1ďiďm are i.i.d. uniform in Λt,x “ r0, tsˆ r´x, xs (of volume 2tx), we get that

(5.3) ErNks “

ˆ

m

k

˙

ˆ
Vol

`

Hkpt, Aq
˘

p2txqk{k!
,

where the k! comes from the fact that we rearrange the Zi’s so that 0 ă t1 ă ¨ ¨ ¨ ă tk ă t.
Using Lemma 5.1 together with

`

m
k

˘

ď mk{k1, we therefore obtain that

(5.4) P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď

ˆ

CAtγm

xk1`γ

˙k

.

This gives the upper bound (2.9).

Lower bound. For any k ě 1, let us consider the following sub-boxes of Λt,x, for 1 ď i ď 4k:

Bi :“
”

pi´ 1qt

4k
,
it

4k

¯

ˆ

”

´
Apt{kqγ

2
^ x,

Apt{kqγ

2
^ x

ı

.

Then, we realize that if there are at least k boxes among tB2iu1ďiď2k containing (at
least) one point, then this set of k points has a γ-Hölder norm which is bounded by
Apk{tqγ{pt{kqγ ď A. Hence, we get that

(5.5) P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď P
´

2k
ÿ

i“1

1t|ΥmXB2i|ě1u ď k
¯

“ P
´

2k
ÿ

i“1

1t|ΥmXB2i|“0u ď k
¯

.

For the last probability, we use a union bound and the fact that the 1t|ΥmXB2i|“0u are
exchangeable, to get that

1´ P
´

2k
ÿ

i“1

1t|ΥmXB2i|“0u ď k
¯

ď

ˆ

2k

k

˙

P
´

Υm X

k
ď

i“1

Bi “ H
¯

ď 22k
´

1´
Atγ

8kγx
^

1

4

¯m
.(5.6)

In the second inequality we used that Υm is a set of m independent random variables

uniform in Λt,x (of volume 2tx), and that
Ťk
i“1 Bi has a volume of p1

4At
1`γk´γq^ tx

2 . Then,
we use that 1´ x ď e´x for any x, to get that

P
´

LpH
A
γ q

m pΛt,xq ď k
¯

ď exp

"

ck
´

1´ c
´Atγ{x

kγ
^ 1

¯m

k

¯

*

,

which concludes the proof of the (2.5).

5.2. Entropy-constrained LPP. We prove first (2.9), and then (2.10). The proofs are
analogous to that of the Hölder case (and to what is done in [6, Section 3]), we give the
details for the sake of completeness.
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Upper bound. Define Ekpt, Bq the set of k (ordered) elements up to time-horizon t that
have an entropy bounded by B:

Ekpt, Bq “
!

pti, xiq1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă t,Enta,b
`

pti, xiq1ďiďk
˘

ď B
)

.

Then, analogously to Lemma 5.1, we are able to compute exactly the volume of Ekpt, Bq.

Lemma 5.2. For any t ą 0 and B ą 0, we have for any k ě 1

Vol
`

Ekpt, Bq
˘

“ 2k
`

1
a

˘k Γp 1
aq
k

Γ
`

k
a ` 1

˘

Γpa`ba q
k

Γ
`

k pa`bqa ` 1
˘

ˆBk{atkpa`bq{a.

In particular, it gives that there exists some constant C “ Ca,b such that

VolpEkpt, Bqq ď
´CB1{atpa`bq{a

kpa`b`1q{a

¯k
.

During the course of the proof, one finds that Ca,b ď cpa` bq´1{2.

Proof. Again, using a decomposition over the left-most point in Ekpt, Bq at position pu, yq
(by symmetry we can assume y ě 0): it leaves k ´ 1 points with remaining time horizon

t´ u and constraint B ´ |y|a

ub
, we obtain the key induction formula below

Vol
`

Ekpt, Bq
˘

“ 2

ż t

u“0

ż pBubq1{a

y“0
Vol

´

Ek´1pt´ u,B ´
ya

ub
q

¯

dydu.

We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation (slightly more involved than that of the previous section).

First of all, we have for k “ 1

VolpE1pt, Bqq “ 2

ż t

u“0

ż pBubq1{a

y“0
dudy “ 2B1{a

ż t

0
ub{adu “ 2B1{a a

a` b
tpa`bq{a .

For k ě 2, by induction, we have

Vol
`

Ekpt, Bq
˘

“ 2k´1
`

1
a

˘k´1 Γp 1
aq
k´1

Γ
`

pk ´ 1q{a` 1
˘

Γpa`ba q
k´1

Γ
`

pk ´ 1q pa`bqa ` 1
˘

ˆ

ż t

u“0

ż pBubq1{a

y“0
pt´ uqpk´1qpa`bq{a

`

B ´ ya

ub

˘pk´1q{a
dydu.

Then, by a change of variable z “ ya{pBubq, we get that
ż pBubq1{a

y“0

`

B ´ ya

ub

˘pk´1q{a
dy “ Bpk´1q{a

ż 1

0
p1´ zqpk´1q{a 1

az
1{a´1B1{aub{adz

“ 1
a A

k{aub{a
Γ
`

pk ´ 1q{a` 1
˘

Γp1{aq

Γpk{aq
.

Moreover, we also have, with a change of variable w “ u{t
ż t

u“0
ub{apt´ uqpk´1qpa`bq{adu “ tpk´1qpa`bq{a`b{a`1

ż 1

0
wb{ap1´ wqpk´1qpa`bq{adw

“ tkpa`bq{a
Γ
`

b{a` 1
˘

Γ
`

pk ´ 1qpa` bq{a` 1
˘

Γ
`

kpa` bq{a` 1
˘ ,
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and this completes the induction.

For the inequality in the second part of the lemma, we use again Stirling’s formula to
control Γ

`

kpa` bq{a` 1
˘

and Γ
`

k{a` 1
˘

, and we obtain

VolpEkpt, Bqq ď
c

k
a

1{a
a

pa` bq{a

ˆ 2
aΓp 1

aqΓp
a`b
a q ˆB

1{atpa`bq{a

`

e´1{a
˘1{a`

e´1pa` bq{a
˘pa`bq{a

k1{akpa`bq{a

˙k

.

Thanks to the asymptotics of Γpαq as αÑ `8 and αÑ 0, we find that there is a constant
c such that for all a, b

VolpEkpt, Bqq ď
a

?
a` b

ˆ

cB1{atpa`bq{a

pa` bq1{2k1{akpa`bq{a

˙k

.

�

Again, as for the Hölder case, we use this Lemma to control the probability that

L
pEBa,bq
m pΛt,xq is larger than some k: similarly to (5.2)-(5.3), we get that

P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď

ˆ

m

k

˙

ˆ
Vol

`

Ekpt, Bq
˘

p2txqk{k!
ď

ˆ

CB1{atpa`bq{am

txkpa`b`1q{a

˙k

,

where we used Lemma 5.2 together with
`

m
k

˘

ď mk{k!. This gives the upper bound (2.9).

Lower bound. The proof is very similar to that in the Hölder case: for any k ě 1, consider
for 1 ď i ď 4k the sub-boxes of Λt,x

Bi :“
”

pi´ 1qt

4k
,
it

4k

¯

ˆ

”

´
B1{apt{4qb{a

2kpb`1q{a
^ x,

B1{apt{4qb{a

2kpb`1q{a
^ x

ı

.

Then, notice that if there are at least k boxes among tB2iu1ďiď2k containing (at least) one
point, then this set of k points has an entropy which is bounded by

k ˆ
pB1{apt{4qb{ak´pb`1q{aqa

pt{4kqb
ď B.

Hence, we get similarly to (5.5)-(5.6) that

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď

ˆ

2k

k

˙

P
´

Υm X

k
ď

i“1

Bi “ H
¯

ď 22k
´

1´
B1{atb{a

4b{akpa`bq{ax
^

1

4

¯m
.(5.7)

In the second inequality we again used that Υm is a set of m independent random variables

uniform in Λt,x (of volume 2tx), and that
Ťk
i“1 Bi has here a volume of B1{apt{4qpa`bq{a

kpb`1q{a ^ tx
2 .

Therefore, we obtain that

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď exp

"

ck
´

1´ c
´ B1{atb{a

xkpa`bq{a
^ 1

¯m

k

¯

*

,

which concludes the proof of (2.10).

5.3. Non-directed E-LPP. We proceed analogously to the two previous sections. The
calculations are similar to the Section 5.1-5.2. Recall that we only deal with the Entropy
case, since the Hölder case is identical, see (3.3)-(3.4).
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Upper bound. Let us define the sets of k elements (with order) of R2 that have an entropy
up to time horizon t smaller than B,

Ekpt, Bq “
!

∆ “ pxiq1ďiďk ; Enta,bpt,∆q ď B
)

“

!

∆ “ pxiq1ďiďk ;
k
ÿ

i“1

}xi ´ xi´1}
a{pb`1q ď D

)

“: Ẽk
`

D
˘

,

with D “ pBtbq1{pb`1q – we used (3.4) to get the second equality. Here again, we are able to

compute the volume of Ẽk
`

D
˘

. For simplicity, let us set γ “ pb` 1q{a (as in Remark 3.1).

Lemma 5.3. For any D ą 0, we have for any k ě 1

Vol
`

ẼkpDq
˘

“ p2πγqk
Γp2γqk

Γp2kγ ` 1q
D2kγ .

In particular, recalling γ “ pb` 1q{a and D “ pBtbq1{pb`1q, it gives that there exists some
constant C “ Ca,b such that

VolpEkpt, Bqq ď
´CpBtbq2{a

k2pb`1q{a

¯k
.

Proof. We prove the first part of Lemma 5.3 by iteration. Note that we easily have that
Ẽ1pDq is a disk of radius Dγ , so that Vol

`

Ẽ1pDq
˘

“ πD2γ . For the iteration, we use for
k ě 2 the recursion formula

Vol
`

ẼkpDq
˘

“

ż Dγ

0
2πrVol

`

Ẽk´1pD ´ r
1{γq

˘

dr

“ p2πqkγk´1 Γp2γqk´1

Γp2pk ´ 1qγ ` 1q

ż Dγ

0
r
`

D ´ r1{γ
˘2pk´1qγ

dr .

Then a change of variable u “ D´1r1{γ gives that
ż Dγ

0
r
`

D´r1{γ
˘2pk´1qγ

dr “ γD2kγ

ż 1

0
u2γ´1p1´uq2pk´1qγdu “ γD2kγ Γp2γqΓp2pk ´ 1qγ ` 1q

Γp2kγ ` 1q
,

which concludes the induction.

For the second part of the lemma, we use again Stirling’s formula to get that Γp2kγ`1q ě
pckq2kγ , and we obtain

Vol
`

ẼkpDq
˘

ď

´2πγΓp2γqD2γ

ck2γ

¯k
.

Recalling D “ pBtbq1{pb`1q and γ “ pb` 1q{a, we get the conclusion. �

We then use this Lemma to control the probability that L
pE t,Ba,b q
m pΛrq is larger than

some k: similarly to (5.2)-(5.3), we get that

P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď ErNks “ mkP
`

pZiq1ďiďk P Ekpt, Bq
˘

.

Here, Nk is the number of k-uples in Υm that are E t,B
a,b ptq compatible, and pZiq1ďiďk are

i.i.d. random variables, uniform in Λr the disk of radius r. Then, with Lemma 5.3, we get
that

(5.8) P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď mkVol
`

Ekpt, Bq
˘

pπr2qk
ď

ˆ

CpBtbq2{am

r2k2pb`1q{a

˙k

.
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This gives the upper bound (3.6).

Lower bound. The proof is analogous to that in the directed context, with some adaptations
to deal with the non-directedness which make the proof more technical.

We consider a partition of the plan into small squares of side δ :“ πr{
?
m: for any

x P pδZq2 we let Bx be the square of side δ centered at x. It is easy to see that there
are at least m{4 disjoint squares Bx (provided that m is large enough) that can be placed
into a rectangle (inscribed in Λr) ordered as follow: we let x0 “ 0 and then we enumerate
x1, . . . , xm{4 following a spiral in a clockwise way, in order to have that any two consecutive
Bxi ,Bxi`1 are adjacent (see Figure 4).

Then, since a square Bx has volume π2r2{m (and recalling Λr has volume πr2), Bx
contains at least one point of Υm with probability 1 ´ p1 ´ π{mqm ě 1 ´ e´π. We define
Qm{4 the number of non-empty squares among Bx0 , . . . ,Bxm{4 , and we define iteratively the
indices Ij of the non-empty squares, by I0 “ 0 and for 1 ď j ď Qm{4

Ij “ inf
 

i ą Ij´1 ; Bxi XΥm ‰ Hu .

x1

x2 x3

x0

x4

x5

Figure 4. In the picture we put m “ 24 points uniformly on Λr and we consider a rectangle
built by 6 “ m{4 squares Bx0 , ¨ ¨ ¨ ,Bx5 enumerated following a spiral in a clockwise way starting
from the origin. Then we consider the non-empty rectangles (in orange) and their indices. In this
example we have I1 “ 1, I2 “ 2, I3 “ 5. Finally we draw a path starting from the origin and
collecting one point in exactly all BI1 , ¨ ¨ ¨ ,BI3 .

For k ě 1, and if Qm{4 ě k, we may consider a path ∆ collecting one point in exactly
all BxI1 , . . . ,BxIk : the entropy of such ∆ is bounded by (see Figure 4)

1

tb

´

k
ÿ

j“1

`

4pIj ´ Ij´1qδ
˘a{pb`1q

¯b`1
ď

4ara

tbma{2

´

k
ÿ

j“1

Uj

¯b`1
,

where we set Uj :“ pIj ´ Ij´1q
a{pb`1q. Therefore, for L

pE t,Ba,b q
m pΛrq to be smaller or equal

than k, one needs to have either Qm{4 ă k or that the entropy of ∆ chosen above is larger
than B: this leads to

(5.9) P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď P
`

Qm{4 ă k
˘

` P
´

Qm{4 ě k ,
k
ÿ

j“1

Uj ą
´Btbma{2

4ara

¯1{pb`1q¯

.

For the first term, and for k ď ε2m{4 (with ε ą 0 small, fixed in a moment), we realize
that Qm{4 ă k implies that there are at least p1´ ε2qm{4 empty squares, which gives by a
union bound that

P
`

Qm{4 ă k
˘

ď

ˆ

m{4

p1´ ε2qm{4

˙

P
´

Υm X

p1´ε2qm{4
ď

i“1

Bxi “ H
¯

ď ecεm
´

1´
p1´ ε2qπ

4

¯m
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where for the second inequality, we used that the volume of
Ťp1´ε2qm{4
i“1 Bxi is p1´ε2qπ2r2{4.

We note that the constant cε goes to 0 as ε goes to 0: we can therefore fix ε ą 0 sufficiently
small so that

(5.10) P
`

Qm{4 ă k
˘

ď e´πm{8 for all k ď ε2m{4.

For the second term in (5.9), let us write V :“ k´1
`

Btbma{2{ra
˘1{pb`1q

– we will consider
only the case when V is large –, so that we need to bound
(5.11)

P
´

Qm{4 ď k ,
k
ÿ

j“1

Uj ą kV
¯

ď P
`

Nk ą εm
˘

` P
´

Qm{4 ď k ,Nk ď εm ,
k
ÿ

j“1

Uj ą kV
¯

,

where Nk denotes the total number of points in the non-empty squares BxI1 , . . . ,BxIk . We

easily have that

P
`

Nk ą εm
˘

ď
1

e´ck

ˆ

m

εm

˙

´πk

m

¯εm
ď eck

pπkqεm

pεmq!
,

where the denominator in the first inequality comes from the fact that we work conditionally
on the fact that k squares are non-empty (which has probability bounded below by e´ck).
Hence, since we work with k ď ε2m{4, and provided that ε has been fixed small enough,
we get that there is a constant c ą 0 such that PpNk ą εmq ď e´cm.

For the last part, note that since the squares Bx are exchangeable, we can control for
1 ď i1 ă ¨ ¨ ¨ ă ik ď m{4

P
`

I1 “ i1, . . . , Ik “ ik;Nk ď εm
˘

“
ÿ

n1,...,nk
1ďn1`¨¨¨`nkďεm

ˆ

m

n1, . . . , nk

˙

´ π

m

¯n1`¨¨¨`nk
´

1´
πik
m

¯m´pn1`¨¨¨`nkq

ď

´

1´
πik
m

¯p1´εqm ÿ

n1,...,nk
1ďn1`¨¨¨`nkďεm

πn1

n1!
¨ ¨ ¨

πnk

nk!
ď e´p1´εqπikeπk .

Where we used that in order to have I1 “ i1, . . . , Ik “ ik there must be exactly k non-
empty squares among the first ik (with n1, . . . , nk points in them) and ik ´ k empty. The
remaining m´ pn1 ` ¨ ¨ ¨ ` nkq points must be outside the first ik squares. For the second
inequality, we used that n1`¨ ¨ ¨`nk ď εm, and that the multinomial coefficient is bounded
by mn1`¨¨¨`nk{pn1! ¨ ¨ ¨nk!q. Hence, there is a constant c such that

P
`

I1 “ i1, . . . , Ik “ ik;Nk ď εm
˘

ď eck ˆ P
`

Gj “ ij ´ ij´1 for all 1 ď j ď k
˘

,

where pGjqjě1 are i.i.d. geometric random variables, of parameter 1´e´p1´εqπ. We therefore
obtain that, provided that V is large enough

P
´

Qm{4 ď k ,Nk ď εm ,
k
ÿ

j“1

Uj ą kV
¯

ď eckP
´

k
ÿ

j“1

pGjq
a{pb`1q ą kV

¯

ď e´c
1kV .(5.12)

To conclude, we have obtained that there are constants such that for k ď ε2m{4, and

for V :“ k´1
`

Btbma{2{ra
˘1{pb`1q

large enough,

(5.13) P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď e´cm ` e´c
1kV .
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One obtains (3.7) by observing that when V is small e´ckpV´1q is larger than 1. The
statements holds for all k ď m by adjusting the constants.

Appendix A. Further simulations and conjectures

In this appendix, we present further simulations, that help us make some predictions
on the values of the constants in (2.13), and support the belief that the model is in the
KPZ universality class. We treat only the directed case because in the non-directed case
simulations are much more greedy and do not bring any convincing insight – we admit that
our algorithm could be improved, but our goal is simply to hint for some conjectures, and
our simulations fills that role perfectly. We start by commenting simulations in the Hγ-LPP
case, where simulations are exact (and efficient), before we turn to the E-LPP case.

A.1. Directed Hγ-LPP. For the Hγ-LPP, we performed two different simulations, in the
Poissonian context of Section 2.3 —focusing on the point-to-point Hγ-LPP, so we write

Lpt, 0q for LpH
A
γ q

λ pt, 0q.

(1) We ran (a few) simulations for t “ 1000 (with λ,A “ 1, restricting to the box r0, tsˆ

r´t2{3, t2{3s), in order to test the value of the constant C “ C1,1p0q “ limtÑ8
1
tLpt, 0q

in (2.17). The results are presented in Figure 6, and commented below.

(2) In order to test the convergence in distribution of the recentered Hγ-LPP, t´1{3pLpt, 0q´
Ctq, we built histograms by running k “ 103 simulations of the Hγ-LPP for t “ 500

(with λ,A “ 1, restricting to the box r0, ts ˆ r´t2{3, t2{3s), for three values γ “ 0,
γ “ 0.5, γ “ 1.5. The results are collected in Figure 7, and commented below.

(1) Value of the constant. Let us present here our results for simulations for the value of

the constant, performed for t “ 1000, in the box r0, ts ˆ r´t2{3, t2{3s, with intensity λ “ 1
and with a constraint A “ 1.

Figure 5. Simulations of optimal paths for the Hγ-LPP with t “ 1000 (intensity
λ “ 1, constraint A “ 1), for different values of γ. The same set of points is used in all
four simulations. For γ “ 0 we have here Lpt, 0q “ 2707, for γ “ 0.5 Lpt, 0q “ 1715, for
γ “ 1 Lpt, 0q “ 1408, and for γ “ 1.5 Lpt, 0q “ 1238. We refer to Figure 6 for a graph
presenting how the constant C1,1 “ limtÑ8

1
t
Lpt, 0q depends on γ.

Our simulations are in accordance with the fact that 1
tLpt, 0q converges a.s. to some

constant, whose dependence on γ is presented in Figure 6 (we present the result of only
one simulation, but several simulations give values for 1

tLpt, 0q very close to those presented
here). In view of the dependence on γ of the constant c1 in Theorem 2.1 (see in particular

(5.1)), a wild guess is that the constant is proportional to p1 ` γq´1Γp1 ` γq1{p1`γq: the

dotted grey line in Figure 6 represents the function γ ÞÑ 23{2

1`γΓp1`γq1{p1`γq – the factor 23{2

is chosen so that it fits the value
?

2 when γ “ 1, corresponding to the standard Lipschitz
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Figure 6. Approximated values of the Hγ-LPP constant: the function represents the
value of 1

t
Lpt, 0q with t “ 1000 (intensity λ “ 1, constraint A “ 1), for different values

of γ P r0, 3s. The dotted grey line represents the function γ ÞÑ 23{2

1`γ
Γp1` γq1{p1`γq, which

seems to be a good candidate to fit the values of 1
t
Lpt, 0q. We refer to Figure 5 for the

corresponding paths for γ “ 0, 0.5, 1, 1.5.

LPP (the missing factor
?

2 comes from the length of the diagonal in Hammersley’s LPP
process). The two curves match quite closely, but they seem to disagree when γ “ 0 (the

constant C1,1 seems very close to 2.75, whereas 23{2 « 2.83).

(2) Convergence of the recentered and renormalized LPP. In order to test the convergence

in distribution of t´1{3pLpt, 0q ´ C1,1tq, we performed 1000 simulations for the point-to-
point Hγ-LPP with t “ 500 (again with intensity λ “ 1, and constraint A “ 1, in the

box r0, ts ˆ r´t2{3, t2{3s), for the three values γ “ 0, γ “ 0.5 and γ “ 1.5. The histograms
presented in Figure 7 seem to confirm the convergence in distribution to a Tracy-Widom
GUE limit.

(a) γ “ 0. (b) γ “ 0.5. (c) γ “ 2.

Figure 7. Histograms of k “ 103 simulations of the point-to-point Hγ-LPP in Poisson envi-
ronment (with λ “ 1 and A “ 1) with t “ 500. The three subfigures (a), (b) and (c) correspond
to the cases γ “ 0, γ “ 1{2 and γ “ 3{2 respectively. In each case, we also present the graph of
the Tracy-Widom GUE density, after a recentering by Cγt (with Cγ « 2.75, 1.75, 1.26 from left to

right), and a renormalization by cγt
1{3 (with cγ « 2.5, 1.3, 0.65 from left to right).

All together, this leads to a (far-reaching) conjecture, for the (point-to-point) Hγ-LPP.

Conjecture A.1. For every γ ě 0, there exists a constant Cγ (equal to 23{2

1`γΓp1`γq1{p1`γq?)

and a constant cγ such that, for the point-to-point Hγ-LPP in Poisson environment with
intensity λ “ 1 and γ-Hölder constraint A “ 1, we have

(A.1)
Lpt, 0q ´ Cγ t

cγ t1{3
pdq
ÝÝÝÑ
tÑ8

FGUE as tÑ `8 .
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A.2. Directed E-LPP. As far as the directed E-LPP is concerned, we also performed
simulations in the setting of Section 2.3 with t “ 100, with a Poisson intensity λ “ 1 and a
constraint B “ 1 (within the box r0, ts ˆ r´t2{3, t2{3s). Simulations are much less efficient,
and the simulated annealing procedure only gives an approximate (under-estimated) value

for Lpt, 0q “ L
pEBa,bq
λ pt, 0q.

Figure 8. Simulation of Poisson point-to-point E-LPP with t “ 100 (with intensity λ “ 1
and constraint B “ 1), via a simulated annealing procedure. The plots represents a path which
collects a number of points that approximate Lpt, 0q, with different parameters a, b, in order to
test the value of the constant C1,1p0q “ limtÑ8

1
t
Lpt, 0q in (2.13). From left to right we have:

a “ 2, b “ 1 (C « 1.83), a “ 4, b “ 1 (C « 1.96), a “ 1, b “ 0 (C « 2.08), a “ 2, b “ 0 (C « 2.55).

Figure 8 presents some simulations to test the dependence of the constant C1,1p0q “
limtÑ8

1
tLpt, 0q on the parameters a, b. We give some values for the constant, and the only

conjecture we may risk to formulate (thanks to simulations for others values of a, b that we
do not present here) is that the constant should be non-decreasing in a and non-increasing
in b. Further conclusions are hard to draw from these simulations.

Figure 9. Histogram of 1000 realizations of Lpt, 0q for t “ 100 (with intensity λ “ 1 and
constraint B “ 1), with a “ 2, b “ 1. We also plotted the graph of the GUE density, centered by

Ca,bt with Ca,b « 1.89, and rescaled by ca,b t
1{3 with ca,b « 1.4.

The histogram presented in Figure 9 makes it natural to conjecture that for every a, b
there exists some constant Ca,b, such that for the point-to-point E-LPP in Poisson envi-
ronment with intensity λ “ 1 and entropy constraint B “ 1, we have the convergence in
distribution

Lpt, 0q ´ Ca,b t

ca,b t1{3
pdq
ÝÝÑ FGUE as mÑ8 ,

with ca,b a renormalization constant.
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